# VIET NAM NATIONAL UNIVERSITY HO CHI MINH CITY INTERNATIONAL UNIVERSITY (IU)



# LY DAN THANH

THE IMPACT OF JOB SATISFACTION AS A MEDIATOR OF
THE EFFECT OF MEETING EFFECTIVENESS ON
ORGANIZATIONAL COMMITMENT

### **DOCTORAL DISSERTATION**

Ho Chi Minh City – April 2023

#### **ACKNOWLEDGEMENTS**

First of all, I would like to express my special thanks of gratitude to the Faculty of Business Administration of International University and my advisors Dr. Bui Quang Thong and Dr. Le Van Chon for their wonderful guidance and enthusiastic support in completing my dissertation. Their assistance kept me going to do the research about "The impact of job satisfaction as a mediator of the effects of meeting effectiveness on organizational commitment".

Besides that, I am really thankful to Dr. Nguyen Nhu Ty – my gentle co-author, who works with me as a corresponding author for publishing papers on International journals during the PhD's process.

Next, I would also like to thank my beloved family including my parents, husband, two sons and friends who have been good sources of encouragement in furthering my interest in this dissertation.

Last but not least, I also want to extend my appreciation to all my beloved lecturers from the School of Business Administration who have provided me with specialized knowledge and scientific research competence during my PhD's course at International University (IU) ), Office of Graduate Affairs of IU, the Board of Management of Hochiminh City University of Economics and Finance (UEF) who have created the best working conditions for me and also to those who could not be mentioned here but have significant played their role to inspire me during this journey.

### THE DECLARATION OF ACADEMIC HONESTY

I declare that what is written in this work has been written exclusively by me and that, excluding quotations, no content has been copied from scientific publications or research works.

In the case of contents taken from scientific publications, the internet or any other document, I have expressly and directly indicated the source in the citations.

# TABLE OF CONTENTS

| M     | easurement                                                                | 3     |
|-------|---------------------------------------------------------------------------|-------|
| Pa    | articipants                                                               | 31    |
| Sa    | mples and procedures                                                      | 31    |
| pr    | ocess                                                                     | 31    |
| Fc    | or the whole dissertation, the author approaches the following methodolog | gical |
| PI    | HASE TWO – QUANTITATIVE RESEARCH                                          | 30    |
| Th    | ne author performs under the discussion guide as the followings:          | 30    |
| In.   | struments                                                                 | 30    |
| Pa    | articipants                                                               | 30    |
| Sam   | ples and procedures                                                       | 30    |
| PI    | PHASE ONE – QUALITATIVE APPROACH                                          |       |
| 1.6   | METHODOLOGY                                                               | 29    |
| 1.5   | SCOPE OF STUDY                                                            |       |
| 1.4   | RESEARCH QUESTIONS                                                        |       |
| 1.3   | RESEARCH OBJECTIVES                                                       |       |
| 1.2   | PROBLEM STATEMENT                                                         |       |
|       | RESEARCH BACKGROUND                                                       |       |
|       | TER 1: INTRODUCTION                                                       |       |
|       | OF FIGURESRACT                                                            |       |
|       | OF TABLES                                                                 |       |
|       | OF ABBREVIATIONS                                                          |       |
|       | E OF CONTENTS                                                             |       |
| THE I | DECLARATION OF ACADEMIC HONESTY                                           | V     |
| ACKN  | IOWLEDGEMENTS                                                             | iii   |
| Conte | ents                                                                      |       |

| <b>2.1.1</b> <i>1</i> | Meeting effectiveness                                                                                                                    | 38           |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2.1.2 1               | Leadership                                                                                                                               | 40           |
| 2.1.3.                | Internal Communication                                                                                                                   | 42           |
| 2.1.5                 | Agenda                                                                                                                                   | 43           |
| 2.2 Metl              | nod and Results                                                                                                                          | 44           |
| 2.2.11                | Data Collection                                                                                                                          | 44           |
| 2.2.2 1               | Data Analysis and Results                                                                                                                | 44           |
| 2.3 Cone              | cluding remarks                                                                                                                          | 50           |
| <b>EFFECTS</b>        | R 3: THE IMPACT OF JOB SATISFACTION AS A MEDIATOR OF MEETING EFFECTIVENESS ON ORGANIZATIONAL                                             |              |
|                       | MENT                                                                                                                                     | 52           |
|                       | ting effectiveness, Leadership, Job satisfaction and Organizational<br>ment                                                              | 53           |
| 3.1.1                 | Meeting effectiveness                                                                                                                    | 53           |
| 3.1.3                 | Iob Satisfaction                                                                                                                         | 53           |
| 3.1.4                 | Organizational Commitment                                                                                                                | 56           |
| 3.2. Met              | hod and Results                                                                                                                          | 57           |
| 3.2.11                | Data Collection                                                                                                                          | 57           |
| 3.2.2 1               | Data analysis and Results                                                                                                                | 57           |
| 3.2.3 1               | Discussion                                                                                                                               | 63           |
| 3.3. Con              | cluding remarks                                                                                                                          | 64           |
| CHAPTEI               | R 4: FACTORS AFFECTING ORGANIZATIONAL COMMITME                                                                                           | <b>NT</b> 66 |
| voice, or             | research of the impact of internal motivation, external motivation, eganizational identification and perceived organizational support on |              |
| Ü                     | ational commitment                                                                                                                       |              |
| 4.1.1                 | Organizational Commitment                                                                                                                |              |
| 4.1.2                 | Organizational Identification                                                                                                            | 68           |
| 4.1.3                 | Internal and External Motivation                                                                                                         | 69           |
| 4.1.4                 | Perceived Organizational Support                                                                                                         | 70           |
| 4.1.5                 | Voice                                                                                                                                    | 71           |
| <b>4.2 Metl</b>       | nods and Results                                                                                                                         | 72           |
| 4.2.1                 | Data Collection                                                                                                                          | 72           |
| 4221                  | Data analysis and Results                                                                                                                | 72           |

| 4.3 Concluding remarks                                                                                                                         | 78        |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 4.4 The research of the impact of leadership, internal communication, internal motivation and external motivation on organizational commitment | 79        |
| 4.4.1 Organizational Commitment                                                                                                                | <i>79</i> |
| 4.4.2. Leadership                                                                                                                              | <i>79</i> |
| 4.4.3 Internal Communication                                                                                                                   | 81        |
| 4.4.4 Intrinsic and Extrinsic Motivation                                                                                                       | 82        |
| 4.5 Method and Results                                                                                                                         |           |
| 4.5.1 Data Collection                                                                                                                          | 83        |
| 4.5.2 Data Analysis and Results                                                                                                                | 83        |
| 4.6 Concluding remarks                                                                                                                         |           |
| CHAPTER 5: CONCLUSION AND RECOMMENDATIONS                                                                                                      |           |
| 5.1 Conclusion                                                                                                                                 | 91        |
| 5.2 Recommendations                                                                                                                            | 99        |
| 5.3 Limitations                                                                                                                                | 99        |
| REFERENCES                                                                                                                                     | 100       |
| LIST OF APPENDICES                                                                                                                             | 106       |
| Appendix 1 – List of Publications                                                                                                              | 106       |
| Appendix 2 - Determinants to gain more effective meetings in the context of vietnamese organization                                            | 106       |
| Appendix 3 - Critical factors for organizational commitment: An empirical studient Vietnam                                                     |           |
| Appendix 4 - Building organizational commitment: the analysis of indicators                                                                    | 106       |
| Appendix 5 - Factors affecting organizational commitmen                                                                                        | 106       |
| Appendix 6 - Questionnaires                                                                                                                    | 106       |
| APPENDICES                                                                                                                                     | 107       |
| APPENDIX 1: LIST OF PUBLICATIONS                                                                                                               | 107       |
| APPENDIX 2 - DETERMINANTS TO GAIN MORE EFFECTIVE MEETING THE CONTEXT OF VIETNAMESE ORGANIZATION                                                |           |
| APPENDIX 3 – CRITICAL FACTORS FOR ORGANIZATIONAL COMMITMENT: AN EMPIRICAL STUDY IN VIETNAM                                                     | 190       |
| APPENDIX 4 - BUILDING ORGANIZATIONAL COMMITMENT: THE ANALYSIS OF INDICATORS                                                                    | 232       |
| APPENDIX 5 - FACTORS AFFECTING ORGANIZATIONAL COMMITME                                                                                         | NT253     |

| APPENDIX 6 – SUPPLEMENT     | 319 |
|-----------------------------|-----|
| APPENDIX 7 - QUESTIONNAIRES | 357 |
| THE END                     | 360 |

### LIST OF ABBREVIATIONS

**Abbreviations** Meaning

AGEN Agenda

LDS Leadership

IC Internal Communication

MET Meeting Effectiveness

JOB Job Satisfaction

OGC Organizational Commitment

EV Employee Voice

IM Internal Motivation

EM External Motivation

POS Perceived Organizational Support

OI Organizational Identification

# **LIST OF TABLES**

| Table 1. Descriptive statistics (MET)                   | 45 |
|---------------------------------------------------------|----|
| Table 2 - KMO and Bartlett's Test (MET)                 | 46 |
| Table 3 – EFA Result (MET)                              | 47 |
| Table 4 – KMO and Bartlett's Test (MET)                 | 47 |
| Table 5 – Component Analysis (MET)                      | 48 |
| Table 6 – Standardized Regression Weights (MET)         | 49 |
| Table 7 – Descriptive Statistics (JOB)                  | 57 |
| Table 8 – KMO and Barlett's Test (JOB)                  | 59 |
| Table 9 – EFA Result- Rotated Component Matrix (JOB)    | 59 |
| Table 10 – KMO and Bartett's Test (JOB)                 | 60 |
| Table 11 – Regression Weights (JOB)                     | 61 |
| Table 12 – Mediating with Regression Analysis (JOB)     | 62 |
| Table 13 – Descriptive Statistics (OGC1)                | 72 |
| Table 14 – KMO and Bartlett's Test (OCG1)               | 74 |
| Table 15 – EFA Resutl-Rotated Component Matrix (OCG1)   | 75 |
| Table 16 – KMO and Bartlett's Test (OCG1)               | 76 |
| Table 17 – Regression Weights (OCG1)                    | 77 |
| Table 18 – Descriptive Statistics (OCG2)                | 83 |
| Table 19 – KMO and Bartlett's Test (OCG2)               | 85 |
| Table 20 – EFA Resutl – Rotated Component Matrix (OCG2) | 86 |
| Table 21 – KMO and Bartlett's Test (OCG2)               | 87 |
| Table 22 – Regression Weights (OCG2)                    | 87 |

# **LIST OF FIGURES**

| Figure 1-Results of SEM of research model (standardized) (MET)    | 48 |
|-------------------------------------------------------------------|----|
| Figure 2 - Results of SEM of research model (standardized) (JOB)  |    |
| Figure 3 – Results of SEM of research model (standardized) (OCG1) | 76 |
| Figure 4 - Results of SEM of research model (standardized) (OCG2) | 87 |

#### **ABSTRACT**

The dissertation "The impact of job satisfaction as a mediator of the effect of meeting effectiveness on organizational commitment" examines the relationships among the concepts including job satisfaction, leadership, meeting effectiveness, organizational commitment and the antecedents of meeting effectiveness and organizational commitment consisting of agenda, internal communication, internal motivation, external motivation, employee voice, organizational identification and perceived organizational support. They have become the attractive subjects for mostly researched-papers due mainly to their vital roles to the development of an organization. Four studies have been done to demonstrate the interactions and relationships among those factors. Initially, the author begin with meeting effectiveness. Apparently, much time and effort are devoted to meetings aiming at information sharing, decision making, and problem solving because they are the primary communicative practice in every organization in order to fulfill the vital consensus, make changes and exchange ideas. From those benefits, it encourages the author to find out how internal communication, agenda and leadership power affect meeting effectiveness, especially in Vietnamese organizations. The first findings reveal that leadership and substantive conflict affect meeting effectiveness (see Figure 1 in Chapter 2).

After the process of this study, the author next explores the impact of the mediating role of job satisfaction on the relationship between meeting effectiveness and organizational commitment, which enable to increase more employees' commitment to an organization. This research aims to show the findings of whether leadership has a positive effect on meeting effectiveness, how meeting effectiveness affects organizational commitment and to which extent job satisfaction impacts the relationship between meeting effectiveness and organizational commitment. The findings show that leadership positively affects meeting effectiveness and job satisfaction has a positive influence on the relationship between meeting effectiveness and organizational commitment (see Figure 2 in Chapter 3).

Last but not least, the author continues investigating how to boost organizational commitment and what antecedents that strongly affect organizational commitment. Two

studies have been conducted for this highly-expected purpose. While the former is about the six main concepts including internal motivation, external motivation, employee voice, organizational identification and perceived organization support, the latter is about internal communication, leadership, internal motivation, external motivation and organizational commitment. From the analyzed results of these two studies, they demonstrate that leadership, organizational identification, perceived organizational support, internal communication, internal motivation and external motivation positively influence organizational commitment (see Figures 3 and 4 in Chapter 4).

The data sample is collected by the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at about 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business with Five-point Likert scale. The findings show that three main antecedents affecting meeting effectiveness are leadership, agenda and internal communication. Moreover, there is the impact of job satisfaction as a mediator of the effects of meeting effectiveness on organization commitment. Besides that, six prominent factors positively affecting organizational commitment are internal motivation, external motivation, organizational identification, perceived organizational support, leadership and internal communication.

The dissertation's findings suggest that meeting organizers or leaders should strengthen the quality of meetings more effectively and efficiently by improving their leadership styles and ensuring a fair fit with their organizational culture. Furthermore, two considerations of agenda and internal communication should be clear, effective and in harmony. This would facilitate an inspire engagement between subordinates and organizations. Furthermore, job satisfaction needs to be accorded priority. Most problems or conflicts occurring during work exchanges should be comprehensively and sufficiently resolved, especially in face-to-face meetings. It is obvious that whenever subordinates feel satisfied with their jobs, they express a strong desire to maintain membership in and commitment to their organizations. Finally, to increase more commitment from loyal organizational members, besides leadership and internal communication as mentioned above, internal motivation, external motivation,

organizational identification and perceived organizational support also need to be highly concerned.

From the perspective of human resource management, when recruiting and developing personnel, leadership teams should be carefully considered and designated as they will be the ones in charge of employee development and closely direct their subordinates in every act and strategy that they implement at work. The findings can also be useful for managers and organizational analysts as reference in seeking ways to increase employee retention, performance, commitment and the optimal purpose of achieving better profitable benefits, based on these internal resources.

#### **CHAPTER 1: INTRODUCTION**

#### 1.1 RESEARCH BACKGROUND

Over the past few years, the advent of the fourth industrial revolution in information and communication technologies has been increasing competition with business. This significant change in business ecosystems will profoundly influence several internal facets in an organization or company such as operational regulations, management strategies and so forth for adapting and integrating with new challenges. Effectively integrated strategies surely facilitate an organization for a sustainable development in the current and future circumstances. Especially, the main focus is a pillar related to human resource management. Nobody can deny that employees are an organization's assets and activities that involved in human must be taken into account. One of the adaptive drivers is meeting effectiveness. The reason why meeting becomes so essential to an organization is that it is the causes and effects of most problems occurring in the workplace.

So far, in terms of theory of meeting, for a few decades, it has represented a pervasive and vital dimension of organizational life. In previous studies, some authors state several factors affecting meeting productivity such as irrelevant topics or issues, excessive length of time and poor or inadequate preparation (Nicholas & Jay, 2001). Volkema (1996) emphasizes that not only the use of agenda and meeting minutes but also the role of group leaders/facilitators controlling the meeting affect the meeting effectiveness (Volkema & Fred Niederman, 1996). The executives were estimated to spend approximately 10 hours per week in meetings and that in the United States, about a million meetings are going on at any given hour during the business day (Nixon & Littlepage, 1992). In fact, meetings in the workplace are said to be the poor and ineffective use of time. Almost meetings are rarely necessary, longer than expected, lacking formal rules or structure (Belisle, Paquet, & Lafranchise, 2022b). Moreover, many studies review that meetings are costly, unproductive and dissatisfying (Grosse & Femenias, 2022). Based on the meeting's quality, employees may evaluate workplace meeting as positive interruptions, otherwise, meetings may be considered as negative interruptions that waste valuable time (J. A. Allen, Tong, & Landowski, 2020). With a lot of negatives, therefore, how to make meetings more effective becomes an interesting issue.

Meetings become more vital in Vietnamese context because of the style of hierarchical management and the power of authority due to Vietnamese culture. There is a large power distance between a boss and employees or a superior and subordinates. Compared to other countries like Australia, the United States and so forth, Vietnamese managers feel agreeable with insiders in a hierarchical management structure, that is, they often seek time to "talk things over with people in the other section before taking action". While Vietnamese managers are more oblique and subtle in voicing their displeasure or concern, Australian managers tend to be more open in their criticism (Berrel, Wright, & Hoa, 1999). It is so called culture and managerial ethics values. Members who come from a particular community or organization with the same culture background will have the same thoughts and behaviors towards the same thing or phenomena (Nguyen & Truong, 2016).

Moreover, based on the literature review of meeting effectiveness, the role of meeting leader is so important. Theoretically, leadership is considered as the key factor in determining whether the organization succeeds (Men, 2014). Several researchers suggest that the leaders should orchestrate the meeting, but should not endorse a particular view point or the leaders should avoid taking total responsibility at the meeting because obviously if they have tight control, dialogue will be cut off, negatively affecting the quality of decisions and that of meetings (Dunsing, 1977). On the other hand, meeting leaders are suggested to keep the meetings forward, but should respect other people's opinion and restrain from giving his viewpoint (Renton, 1980). Besides that, meeting procedure or agenda is also mainly concerned in meeting literature. Based on agenda-oriented meeting management, an agenda facilitates meeting leaders to manage one or more meetings for locally-located participants, remote participant or both (Butt, 2006). Internal communication is also another factor because it plays a crucial role for an organization's success and it has the influence on strategic manager's ability to keep employees and gain targets (M. Welch & Jackson, 2007). Actually, no one can deny that in everyday activities, organizational members face with resolving conflicts with subordinates, supervisors, peers and stakeholders (Putnam, 1988). The

causes of conflict may be from individual characteristics, interpersonal factors (perceptual interface, communication, behavior, structure or culture, previous interactions, etc.) and issue (complex vs. simple, vague vs. clear, principled, etc.) (Wall & Callister, 1995).

According to Hofstede, there are five dimensions in cultural differences including Power distance, individualism and collectivism; Masculinity and Femininity; Uncertainty avoidance; and Time-orientation. Surely, culture is difficult to change. The Vietnamese culture shares a long and similar Confucian-based cultural heritage, therefore, Vietnam is in the paradoxical position of embracing both collectivism and individualism. It is initially easier to adopt new individualistic values then to forsake long-held collectivist Confucian-based values (Swierczek & Ha, 2003). Specifically, Power distance and Collectivism are the two prominent factors that influence Vietnamese people's perception in an enterprise (Hofstede, 2021; Kohl, 2007). That means the power distance between superiors and subordinates is so far. They tend to be overwhelming between relationships and work responsibilities. It is also believed that leadership plays the role of aligning employee goals and perspectives in the workplace (Alshurideh, Kurdi, & Alhamad, 2022). Leadership styles are an important factor a sector of business and management (Cox, Hannif, & Rowley, 2013).

Moreover, from conflict theory, it is related to individual and work-team effectiveness and productivity. Far or less, it is also devoted to outcomes including job satisfaction and organizational commitment (De Dreu & Beersma, 2005). Several studies have shown large impact of job satisfaction on the motivation of workers. And it is believed that worker motivation has an influence on productivity and hence also on business performance (Aziri, 2011). Based on turnover models, job satisfaction and organizational commitment are tightly integrated. Besides conflict solving, determinants of promotional chances and supervisory support work well in job satisfaction (Gaertner & Robinson, 2000). According to Valaei (2016), more specifically, while payment, promotion, fringe benefits, co-worker, communication, operating procedures and nature of the work are positively linked to affective commitment, payment, promotion, fringe benefits, supervision, contingent rewards,

operating procedures and nature of work have a positive relationship with normative commitment (Valaei & Rezaei, 2016).

Like meetings, commonly, the concept of organizational commitment in recent years attracts a lot of worldwide researchers so far. There have been several experimental studies conducted to increase employee commitment to organizations. Considered as organization's assets, employees play the vital role for several rational reasons. It is believed that employees feel tightly closed to goals and values of the organization toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980). Some researchers reveal that high performance is obviously contributed by highly committed employees than less committed ones (Mowday, Steers, & Porter, 1978; Steers, 1977). They will bring more values than those with light commitment. In order to fostering the employees' commitment, the company should be able to direct employees to its mission, create a sense of community and facilitate them to develop themselves (Dessler, 1999). In fact, there have been a lot of worldwide researchers study about factors affecting organizational commitment. However, they haven't conducted of whether and how meeting effectiveness, leadership and job satisfaction affect organizational commitment. Nowadays, meetings are the primary communicative practice in every organization in order to fulfill the vital consensus, make changes and exchange ideas. Much time and effort are devoted to meetings aiming at information sharing, decision making, and problem solving. Even, conflicts may exist during the process of interaction. And, if they are resolved in a constructive way through the meetings, they will surely bring more benefits for the organization. Furthermore, leadership power plays a very essential role in making a meeting effective. Obviously, whenever employees feel satisfied with their job, they reveal their emotions with the respect of their work environment and cognitive evaluation of the well-being quality of their job such as with pay, coworkers or supervisors (Alegre, Machuca, & Mirabent, 2015; Yousef, 2017).

Most importantly, as mentioned above, why those factors that become integrated in making meeting effectively in the context of Vietnam are caused by the Vietnamese culture. It forms the way Vietnamese people treat and behave in workplace such as leadership (power distance, high-context), agenda (time-orientation) and so forth.

After a long period of doing research involved in the above indicators, the authors find out that there are strong relationships among them in which leadership directly affects meeting effectiveness; meeting effectiveness influences organizational commitment with the mediation of job satisfaction and also investigate that organizational commitment is influenced by leadership as well.

In short, from the perspective of contributions, this dissertation's findings have contributed to the body of literature in the research field of meeting effectiveness, leadership, job satisfaction and organizational commitment from theoretical perspective in Vietnamese context.

In terms of management, the top managers or leaders may apply these suggested models from the findings such as a model of determinants to gain more effective meetings in the context of Vietnamese organization; a model of antecedents strengthening organizational commitment; factors affecting organizational commitment; building organizational commitment: the analysis of indicators and the impact of job satisfaction as a mediator of the effects of meeting effectiveness on organizational commitment for better organizational outcomes in both public and private sector.

Overall aims of the dissertation are to help leaders making strategic plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and to encourage them make more commitment to their organization. Moreover, the optimal purpose is to achieve better profitable benefits, based on these these internal resources.

#### 1.2 PROBLEM STATEMENT

Although there are numerous empirical studies of organizational commitment, leadership, internal communication, job satisfaction and meeting effectiveness, just a few have focused to find out the causal relationships among these variables. The cognitive science literature provides us with some ideas on these concepts, but to what extent they involve in Vietnamese organizations or companies is still open. From the aspect of literature review, the author expect to contribute to the body of knowledge in the areas of leadership, internal communication, job satisfaction, meeting effectiveness

and organizational commitment. Furthermore, the study is conducted to explore the effect of leadership, internal communication on organizational commitment and the mediating effect of job satisfaction between meeting effectiveness and organizational commitment and the antecedents of meeting effectiveness and organizational commitment.

In terms of the current relevant theories related to the dissertation, the concept of meetings has been studied by serval authors from over the world surrounding the topics about "perceived meeting effectiveness in the role of design characteristics and meeting modes", "a tool for reducing the time loss and dissatisfaction associated with meetings", "psychology safety at Local Union Meeting", "driving meeting effectiveness through organizational process improvement", "meeting mode effects on quality and effectiveness with clients and sales" and so forth. However, in the context of Vietnam, except the topic about actual situation of degree of meeting social needs for professional capacity of bachelor of sports majoring, the others haven't been closely related to meeting effectiveness. Moreover, in terms the concepts related to organizational commitment, leaders ship and job satisfaction, they have been explored but scattered. Therefore, the author aims in the focused way to find out the causal relationships among the concepts as variables so that the results help to contribute the new theories and managerial aspects.

Especially, the Vietnamese culture is considered as the main causal factor influencing the enterprise's perception and operation. The management is susceptible to problems due to the influence of culture and it is evident that Vietnamese managers are more tolerant of hierarchical management styles and positions of authority. Vietnamese managers feel comfortable with insiders in a hierarchical management structure, that is, they often seek time to "talk things over with people in the other section before taking action". Compared to Australian managers, while Vietnamese managers are more oblique and subtle in voicing their displeasure or concern, Australian managers tend to be more open in their criticism (Berrel et al., 1999). Actually, it is so called culture and managerial ethics values. Members who come from a particular community or organization with the same culture background will have the same the thoughts and behaviors towards the same thing or phenomena (Nguyen & Truong,

2016). According to Hofstede, there are five dimensions in cultural differences including Power distance, individualism and collectivism; Masculinity and Femininity; Uncertainty avoidance; and Time-orientation. Culture is difficult to change. The Vietnamese culture shares a long and similar Confucian-based cultural heritage, therefore, Vietnam is in the paradoxical position of embracing both collectivism and individualism. It is initially easier to adopt new individualistic values then to forsake long-held collectivist Confucian-based values (Swierczek & Ha, 2003).

Above all, Power distance and Collectivism are the two prominent factors that influence Vietnamese people's perception in an enterprise (Hofstede, 2021; Kohl, 2007). It is also believed that leadership plays the role of aligning employee goals and perspectives in the workplace (Alshurideh et al., 2022). Leadership styles are an important factor a sector of business and management (Cox et al., 2013).

It reconfirms why meetings become ineffective in Vietnamese context, mainly in the workplace.

The research gaps in the dissertation that the author contributes are:

From the perspective of theoretical contributions, the author aims to provide the body of literature in the fields of meeting effectiveness, leadership, internal communication, job satisfaction and organizational commitment by conducting the following studies as:

- First, the influence of meeting effectiveness on organizational commitment
- Second, the impact of the mediating role of job satisfaction on the relationship between meeting effectiveness and organizational commitment
- Third, the effect of leadership on organizational commitment
- Fourth, the effect of internal communication on organizational commitment

From the perspective of practical implications, the author aims to contribute the profound ideas of organization commitment to the top management for making better organizational outcomes in human resource management, performance, productivity, commitment and so forth in both public and private sector.

Specifically, the findings provide the framework for meeting organizers to control their leadership in a proper way and constructive way; for top managers or leaders to make strategic plans of action and to design suitable and efficient policies for motivating

employees to strengthen their job performance and increase more commitment; and for the organization itself to achieve better profitable benefits.

In fact, the dissertation aims to do the profound research in Vietnamese context on firstly what underlying factors of meeting effectiveness, secondly the mediating role of job satisfaction in the effect of meeting effectiveness on organizational commitment and finally what factors affecting organizational commitment.

Furthermore, the dissertation also has the purposes to contribute to the literature of meeting effectiveness, leadership, internal communication, job satisfaction and organizational commitment in the context of Vietnamese organizations with the optimal aim to assisting leaders making strategic plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization.

#### 1.3 RESEARCH OBJECTIVES

General objectives:

- Aim to do the profound research in Vietnamese context for the better effective meetings in order to make more organizational committed employees and increase much more profits for an organization for the sustainable development.

Specific objectives:

- Firstly, explore what underlying factors of meeting effectiveness are;
- Secondly, examine whether there are the mediating role of job satisfaction in organizational commitment and the causal effect of leadership on organizational commitment;
- Finally, find out what factors affect organizational commitment.

In addition, the author also decides to explore whether organizational identification, internal and external motivation, perceived organizational support, voice, leadership, internal communication, intrinsic motivation and extrinsic motivation influence organizational commitment.

### 1.4 RESEARCH QUESTIONS

Four main questions and their sub-questions:

Question 1: What factors affect meeting effectiveness so that meetings become more essential and beneficial to the organization?

Question 2: How does job satisfaction mediate the relationship between meeting effectiveness and organizational commitment?

Question 3: What antecedents strongly interact with organizational commitment in the context of Vietnamese organizations in the purpose of helping leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization?

Question 4: What more antecedents mainly affect organizational commitment in the context of Vietnamese organizations and how does leadership either affect meeting effectiveness or organizational commitment?

#### 1.5 SCOPE OF STUDY

The dissertation involves a 6-month survey of 34 Vietnamese organizations in both state and private sectors from several industries such as tax, banking, health service, airlines, education and business in the areas of Ho Chi Minh City, Binh Duong and Can Tho. Thanks to the relationship and with the aims of collecting reliable and objective data, the author tries to survey in the variety of these fields and to extend more geographical areas beyond Ho Chi Minh City.

#### 1.6 METHODOLOGY

The dissertation is conducted into two phases.

#### PHASE ONE – QUALITATIVE APPROACH

In the qualitative research of phrase one, the author aims to find out the importance of meeting effectiveness, employees' attitude towards meetings, similarities and differences in different sectors and then also check whether participants can understand the survey questionnaires or not.

Perception is the phenomenon about behavioral issues involving multiple variables that are hard to observe and control. Therefore, together with the existing literature, to get inner experience of employees about work meetings, *focus group* is applied to the data collection method.

Prior to the study, importantly, the author has to make sure that there were no hierarchies within the teams and all participating teams had stated that team meetings were carried out regularly.

Samples and procedures

Samples are including 4 organizations in HCMC.

**Participants** 

20 participants are both male and female subordinates.

*Instruments* 

The approach is conducted by asking four research questions and then grouping the data and the look for similarities and differences.

Research question 1: How do employees feel about having more meetings?

Research question 2: What makes employees look forward to their work meetings?

Research question 3: What makes employees dread their work meetings?

Research question 4: What factors affect meeting satisfaction and job performance?

The author performs under the discussion guide as the followings:

It is given with an introductory comment informing the group about the focus group purpose and rules and then outlines the topic and research questions in the group session. Participants are free from any control and data are collected in their natural environment. As a moderator, the researcher has the role to listen to and record what people say and make a certain that everyone get a chance to speak.

In data analysis, the focus is based on four points conducted by the researcher's diary to get the themes and reflect them with the existing literature reviews. The most important point is the primary message contents. Next, the evaluation of attitude of the speaker toward the message should be mentioned. On the other hand, the research clarifies whether the content of the message is meant to represent individual or groupshared ideas.

The findings show that most of the participants think meetings are so frightened, so bored, time-wasted, and ineffective.

#### PHASE TWO – QUANTITATIVE RESEARCH

For the whole dissertation, the author approaches the following methodological process.

#### Samples and procedures

34 Vietnamese organizations in both state and private sectors from several industries such as tax, banking, health service, airlines, education and business in the areas of Ho Chi Minh City, Binh Duong and Can Tho.

### **Participants**

Participants are both male and female subordinates.

#### Measurement

They are distributed as hard copies that required handwritten responses. These questions contained items using five-point Likert scale: totally disagree, disagree, neutral, agree, totally agree.

#### Data analysis

The data underwent the following analysis steps: checking the reliability of the scale, exploratory factor analysis (EFA), confirmatory factor analysis (CFA) and structural equation modeling (SEM) analysis.

In testing the reliability of the scale, a good scale should have Cronbach's Alpha reliability of 0.7 or higher (Nunnally, 1978). Another important indicator was Corrected Item – Total Correlation which represented the correlation between each observed variable with the other variables in the scale and should have value from 0.5 or more (Hair, Black, Babin, & Anderson, 2010).

In exploratory factor analysis, the extraction method was Principal Component Analysis and the Rotation Method was Varimax with Kaiser Normalization. The criteria in EFA analysis included:

- Kaiser-Meyer-Olkin (KMO) coefficient had to reach a value of 0.5 or more which was a sufficient condition for factor analysis to be appropriate;
- Bartlett's test of sphericity had statistical significance (sig Bartlett's Test < 0.05), showing that observed variables are correlated with each other in the factor;
- Eigenvalue was used criterion to determine the number of factors in EFA analysis. Only factors with Eigenvalue ≥ 1 were kept;
- Total Variance Explained  $\geq$  50% showed that the EFA model was suitable;

- Factor Loading represented the correlation relationship between the observed variable and the factor. According to (Hair, Black, Babin, & Anderson, 2010), a good quality variable should have the loading from 0.5.

Confirmatory Factor Analysis (CFA) was then used to evaluate:

- The overall fit of the data based on the model. The fit indexes were used such as Chisquare/df, CFI, TLI, GFI, RMSEA;
- The quality of observed variables, confirming the factor structures;
- The Reliability, Convergent Validity and Discriminant Validity of factor structures.

The reliability index including the Composite Reliability (CR) was expected larger than 0.7. The convergence index using the Average Variance Extracted (AVE) was expected larger than 0.5. The discriminant indexes consisting the Shared Variance (MSV) was required less than the Average Variance Extracted (AVE), and the Square Root of AVE larger than the Inter-Construct Correlations.

Lastly, covariance-based SEM (CB-SEM) was used to confirm or disprove the model based on the statistical significance of variables and the overall fit of the model.

#### 1.7 DISSERTATION SIGNIFICANCE/CONTRIBUTION

This thesis significantly contributes to the knowledge of meeting effectiveness, leadership, internal communication, job satisfaction and organizational commitment. It provides the theoretical and practical models consisting of antecedents of meeting effectiveness, factors affecting organizational commitment and the mediating role of job satisfaction in the causal effect of meeting effectiveness on organizational commitment in Vietnamese context.

From the perspective of theoretical contributions, this research contributes to the body of literature in the field of meeting effectiveness, leadership, internal communication, job satisfaction and organizational commitment.

Specifically, this research conducts the integrated model of the antecedents of meeting effectiveness and factors affecting organizational commitment via the mediating role of job satisfaction. The findings are explored as follows.

- Initially, the influence of meeting effectiveness on organizational commitment

- Secondly, the impact of the mediating role of job satisfaction on the effect of meeting effectiveness on organizational commitment
- Thirdly, the effect of leadership on organizational commitment
- Fourthly, the effect of internal communication on organizational commitment.

The original cause is based on the theory of meeting effectiveness. Most meetings seem to be time and effort wasters, meeting effectiveness brings a lot of benefits for organizational members. It is particularly related to goal attainment and decision satisfaction. They need be considered and improved in an effective and efficient way so that subordinates make more contributions and increase more organizational commitment to their workplace. Furthermore, it is evident that meeting effectiveness is significantly influenced by leadership. Meeting leaders' guides decide whether the meetings are effective or not. In fact, leadership plays a very important role in transforming, motivating and enhancing subordinates' actions and ethical aspirations. However, there is a very big power distance between boss and employees or superiors and subordinates. This very big power distance has caused various matters from light to serious, some of which are harmful and dangerous to organizations because it may burn a huge flame among an organization's members.

During the researching process of meeting effectiveness, the author also finds out that job satisfaction positively linked to meeting effectiveness. Moreover, whenever satisfied, subordinates contribute more efforts and increase more commitment to an organization. Therefore, job satisfaction becomes a mediator in the effect of meeting effectiveness on organizational commitment.

In addition, surprisingly, based on the results of the antecedents of meetings effectiveness, the findings show that leadership and internal communication also strongly affect organizational commitment.

From the perspective of practical implications, this study expects to provide the profound ideas of organizational commitment to top management. Especially, the top managers or leaders may take into account the framework of the findings as suggested for better organizational outcomes in human resource management, performance, productivity, commitment and so forth in both public and private sector.

Specifically, in order to host a meeting effectively, meeting organizers should control their leadership in a proper way and solve thoroughly any conflicts raising in a constructive way in order to build an effective and efficient organizational environment.

Furthermore, the study also facilitates leaders to make strategic plans of action or design suitable and efficient policies for motivating employees to strengthen their job performance and increase more commitment to their organization. And the optimal purpose is to achieve better profitable benefits, based on these these internal resources.

#### 1.8 STRUCTURE OF THE DISSERTATION

The dissertation mainly focuses on the four main constructs: meeting effectiveness, leadership, job satisfaction and organizational Commitment. It is initially caused by the importance of meeting effectiveness because it is considered to be vital in an organizational life. From theory of meeting for years, most of the meetings have represented as excessive length of time and poor or inadequate preparations. Therefore, together with the existing literature, the author decides to get inner experience to employees who are both male and female subordinates about work meetings. Prior to study, the author makes sure that there are no hierarchies within participants. The author conducts phase one with qualitative approach for reconfirming the importance of meeting effectiveness, employees' attitude towards meetings, similarities and differences in different sectors and then also check whether participants can understand the survey questionnaires or not.

After that, the author continues phase two with quantitative approach. In this phase, the author extends to survey about 34 Vietnamese organizations in both state and private sectors from various industries such as tax, banking, health service, airlines, education and business in the areas of Ho Chi Minh City, Binh Duong and Can Tho. The handouts have been delivered to totally 280 participants in the whole process.

With the focuses on the four main constructs which are meeting effectiveness, leadership, job satisfaction and organizational Commitment, the author has been studied and published 4 international journals and 1 proceeding as the list of publications herein: Thanh, L. D., Thong, B. Q., Chon, L.V., & Nguyen, N. T. (2020). Determinants to Gain More Effective Meetings in the Context of Vietnamese Organizations. *International* 

Journal of Analysis and Applications, 18 (3), 461-481; Thanh, L. D., Nguyen, N. T., Chon, L.V., & Thong, B. Q. (2020). BUILDING ORGANIZATIONAL COMMITMENT: THE ANALYSIS OF INDICATORS. Academy of Strategic Management Journal, 19(6), 1-9.; Ly, D., Bui, Q., Le, V., & Nguyen, N. (2021). A model of antecedents strengthening organizational commitment. Management Science Letters, 11(4), 1287-1294.; Thanh, L.D. (2020). Factors affecting organizational commitment. The first international conference on science, economics and society studies UEF 2020, Ho Chi Minh City University of Economics and Finance, Finance Publishing House.; Thanh, L. D., Chon, L.V., Thong, B. Q., & Nguyen, N. T. (2021). Critical factors for organizational commitment: An empirical study in Vietnam. Journal of Asian Finance, Economics and Business, 8(5).

In short, the author describes the dissertation in five chapters.

Chapter 1 initially describes research background about meeting effectiveness and the existence of job satisfaction and organizational commitment. After that, it points out the problem statement, research objectives, research questions, scope of study and dissertation's contribution to the body of the literature in the research field of meeting effectiveness, job satisfaction and organizational commitment from both theoretical and managerial perspective.

Chapter 2 aims to find out what antecedents affecting meeting effectiveness. Specifically, the author expects to investigate how internal communication, agenda and leadership power affect meeting effectiveness, especially in Vietnamese organizations.<sup>1</sup>

Chapter 3 explores the impact of the mediating role of job satisfaction on the relationship between meeting effectiveness and organizational commitment, which enable to increase more employees' commitment to an organization. This research aims to show the findings of whether leadership has a positive effect on meeting effectiveness, how meeting effectiveness affects organizational commitment and to which extent job satisfaction impacts this relationship. The author designs a survey based on the three research questions: How to make meetings more effective? How does meeting effectiveness affect organizational commitment? What will mediate the

35

<sup>&</sup>lt;sup>1</sup> This chapter has been published on International Journal of Analysis and Applications, volume 18, number 3 (2020), 461-481, titled "Determinants to Gain More Effective Meetings in the Context of Vietnamese Organizations.

influence between meeting effectiveness and organizational commitment? This study contributes to the literature by investigating the relationship among four factors: leadership, meeting effectiveness, job satisfaction and organizational commitment. <sup>2</sup>

In chapter 4, two approaches have been conducted.

The first approach is about the research of the impact of internal motivation, external motivation, employee voice, organizational identification and perceived organizational support on organizational commitment. <sup>3</sup>

The second approach is about the research of the impact of leadership, internal motivation, external motivation and internal communication on organizational commitment.<sup>4</sup>

Chapter 5 shows the conclusion and recommendation of the dissertation. In the conclusion, this chapter emphasizes the contributions of the dissertation.

The dissertation ends with Conclusion and Recommendation.

TL

<sup>&</sup>lt;sup>2</sup> That's the reason for the study of "Critical factors for organizational commitment: An empirical study in Vietnam" has been conducted and published on Journal of Asian Finance, Economics and Business, volume 8, issue 5 (2021). The second findings show that three factors having impacts on organizational commitment are leadership, meeting effectiveness and job satisfaction (see Figure 2-Chapter 3).

<sup>&</sup>lt;sup>3</sup> It is published on Academy of Strategic Management Journal, volume 19, issue 6, 2020, titled "Building Organizational Commitment: The Analysis of Indicators" and on Management Science Letters, volume 11, 2021, titled "A model of antecedents strengthening organizational commitment. It is found that empirically, three antecedents mainly affecting organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification but not employee voice (see Figure 3, Chapter 4).

<sup>&</sup>lt;sup>4</sup> It is published on the proceedings of the first international conference on science, economics and society studies of UEF, titled "Factors affecting organizational commitment" (ISBN 978-604-79-2604-6). The result shows that empirically, three antecedents mainly affecting organizational commitment are leadership, intrinsic motivation and extrinsic. From the analyzed results of these two studies, they demonstrate that organizational identification, intrinsic motivation, extrinsic motivation and leadership positively influence organizational commitment (see Figure 4-Chapter 4).

## CHAPTER 2: UNDERLYING FACTORS OF MEETING EFFECTIVENESS

For conducting the dissertation "The impact of Job Satisfaction as a Mediator of the Effects of Meeting Effectiveness on Organizational Commitment", the author, initially, finds out what antecedents affecting meeting effectiveness. Apparently, meetings are the primary communicative practice in every organization in order to fulfill the vital consensus, make changes and exchange ideas. Much time and effort are devoted to meetings aiming at information sharing, decision making, and problem solving. Therefore, finding out how internal communication, agenda and leadership power affect meeting effectiveness becomes essential, especially in Vietnamese organizations. For this purpose, this chapter has been studied and published on International Journal of Analysis and Applications, volume 18, number 3 (2020), 461-481.

Obviously, all meetings are unlike. They vary in several ways, depending on the way people involved, group's size, tools used, management styles, and overall design of the meeting. Moreover, much time and effort is devoted to work meetings with the aims of information sharing, decision making, and problem solving (J.A. Allen, 2012). Moreover, meetings (Meinecke & Lehmann-Willenbrock, 2015) offer an exciting gateway to dynamic social processes in organizations. During their meeting interactions, employees exchange information, build common ground, create new ideas, manage relationships, and make or break team climate.

Everyday experience makes it evident that, not all meetings are effective (Leach, Rogelberg, Warr, & Burnfield, 2009). To most working adults, meetings are often viewed as time-wasters but better or worse, it becomes a common workplace activity, occurring everyday around the world. They play the central role of the work environment that can affect many different aspects of one's job, such as job satisfaction with several purposes which may include decision making, information sharing, product design and development. According to the previous reviews and surveys of managers and staff, Nicholas (2001) also states that meetings are an important part of one's working life (Nicholas & Jay, 2001). Above all, meetings need to be held to accomplish

several tasks such as reaching important consensus, making changes, coming up with new ideas and the forth. According to previous researches, they reveal that as many as half of these meetings are considered poor in quality.

Meeting effectiveness, more or less, becomes crucial in Vietnamese organizations under more intense competition. Due to the difference from people in low-context culture in which people tend to be direct, verbal, explicit, and individualistic (US, most of Western Europe, etc.), Vietnamese people belong to highcontext culture in which people are considered to be nonverbal, indirect, implicit and collectivistic (Vietnam, Greece, etc.) (Locker & Keinzler, 2009). In most meetings, subordinates rarely or never raise their ideas, even though they disagree with ideas from their superiors. They are considered to be obedient and passive. In other meetings, some subordinates suggest solutions and receive an approval from their boss but it still doesn't work because the boss did promise but don't keep it. Vietnamese superiors seem to be so conservative and high-power distance. They direct the meeting without agenda and lack of internal and problem-focused communication. That's the reason why most meetings in Vietnamese organizations have poor quality, leading to diminish staff's job enthusiasm and in turn weakening the organizational commitment. Effective and efficient meetings will motivate subordinates make more contributions and increase commitment to their workplace.

The chapter aims to build a model of determinants to gain more effective meeting in Vietnamese organizations and through which meeting organizers can direct their meeting's quality more effectively and efficiently, later on facilitate and inspire their subordinates to have more engagement in organizational commitment. The author designs a survey based on the two research questions: What makes subordinates look forward to their work meetings? and What makes subordinate threatened by their work meetings?

#### 2.1 Meeting effectiveness and its determinants

#### 2.1.1 Meeting effectiveness

Even though there are several studies surrounding the concept of meeting effectiveness and what factors affecting it, there is no consensus among them. Workplace meetings seem to be perceived as ineffective and have bad image and

reputation (Belisle, Paquet, & Lafranchise, 2022a). Furthermore, because meetings are considered to be poor and ineffective in Vietnamese context, especially based on Vietnamese culture, finding out how internal communication, substantive conflict, agenda and leadership power affect meeting effectiveness becomes essential, especially in Vietnamese organizations.

In general, meetings are considered as the strategic role in the Social Practice that brings consequential strategic outcomes to the organization. Furthermore, they can be recognized as the focal points for organizational members' essential activities (Jarzabkowski & Seidl, 2008). There are several types of meeting such as board meetings, committee meetings, departmental meetings and so forth (Baker, 2010).

Rogelberg (2006) points out that if the meetings are effective in facilitating organizations and employees to reach their goals, their benefits as an organizational tool is obvious (Rogelberg, Leach, Warr, & Burnfield, 2006). Thus, meeting effectiveness needs to be improved in order to get higher performance of organizational members. It was closely related to goal attainment and decision satisfaction. The research suggests that effective meetings need to be open in communicating, task-focused, impartial and strict to the use of agenda (J.A. Allen, Willenbrock, & Landowski, 2014; Nixon & Littlepage, 2014).

According to Nixon (2014), employees' goals and an organization's goals will lead to meeting effectiveness which is a timed process as well. It should bring benefits to the entire organization. The effective meeting shouldn't be lack of the clear purpose and specific agenda, date, duration and materials (Bagire, Byarugaba, & Kyogabiirwe, 2015). Besides that, Bagire (2015) emphasizes that the central role of the chairperson who conducts the meeting decides the meeting effectiveness.

Put it another way, some author states several factors affecting meeting productivity such as irrelevant topics or issues, excessive length of time and poor or inadequate preparation(Nicholas & Jay, 2001). Volkema (1996) emphasizes that not only the use of agenda and meeting minutes but also the role of group leaders/facilitators controlling the meeting affect the meeting effectiveness (Volkema & Fred Niederman, 1996).

Researchers of ethnography have more explanations in the differentiation of behaviors and attitudes of organizational members, known as organizational culture and they also state that cultural behaviors to some extent enforce the rules, laws and norms. For instances, the meanings of communication are implied by the culture and the context of an organization (Safriadi, Hamdat, Lampe, & Munizu, 2006). Sharing activities among organizational members are shaped by organizational values. The way members share their insights will be supported by behaviors from organizational culture (Alavi, Kayworth, & Leidner, 2005-6). Undoubtedly, in order to make meeting effective, several factors need to be discussed.

Actually, an organization is mostly influenced by the top leader who has the strongest power in final decision-making. This most powerful person will get involved either directly or indirectly in the meeting decision. A middle manager who hosts the meeting is still there but unable to conclude or give any solutions. As a result, the leader's style and role become a decisive factor in setting organizational culture. It is known as leadership.

#### 2.1.2 Leadership

From the meeting literature perspective, the role of the meeting leader is vital(Nixon & Littlepage, 2014). In a highly diverse workforce, leadership becomes too complicated and needs to be more skillful. It is considered as the key factor in determining whether the organization succeeds (Men, 2014). The style of leading should be "simpatico" or "diversity-friendly". A diversity leader from CEO to the first line supervisor is considered as a corporate manager who leads subordinates in a fair, effective and respectful way. Nine characteristics that a diversity leader must possess Sensitive, Impartial, Mediators, Patient, Amiable, Teachers, Involved, Communicators, and Optimistic (Hopkins & Hopkins, 1998). Also, in term of leadership, Simola (2012) recommends transformational leadership in which leaders aim to transform, motivate and enhance their subordinates' actions and ethical aspirations. It has an influence in motivating employees' effective work performance (Eliyana & Maarif, 2019). It contains four dimensions which are idealized influence, inspirational motivation, intellectual stimulation and individualized consideration(Judge & Bono, 2000; Simola, Barling, & Turner, 2012). Furthermore,

this type of leadership brings more benefits for leading present workgroups because today's followers turn more challenged and empowered. Followers are in the need of an inspirational leader to guide them in uncertainty and intellectually stimulate and encourage their abilities and talents(Bass & Riggio, 2006). Put another way, Kirkpatrick (1991) emphasizes leader's traits which include achievement, motivation, ambition, energy, tenacity and initiative. Leaders should be provided essential skills such as formulating an organization vision, making effective plans for vision implementation in reality (Kirkpatrick & Locke, 1991).

From most previous studies about leadership, the type of charisma becomes emerging. Partly like ethical one, emotionality is the main dimension in charismatic leadership, the nature of which is not very rational. Problem-solving is not mostly based on authority but rather on personal characteristics (Marjosola & Takala, 2000). Leadership can't be fulfilled without groups who have the common goals. Surely, it is hard for leaders or managers effectively achieving organization's goals and that the leader can only achieve goals through followers' efforts and actions (Andersen, 2006). Fry (2007) highly appreciates type of servant leadership which consists of four elements such as being a servant first, making sure that other people's needs are served; serving through listening; serving through people building and serving through leadership creation(Fry, Matherly, Whittington, & Winston, 2007). Similarly, another type of leadership is transformational leadership by which leaders motivates followers by appealing to their higher-order needs and induce employees to transcend self-interest for the sake of the group or the organization(Men, 2014). For the emphasis, Wallis (2002) strengthens that followers are mainly influenced by leadership's inspiration in which values and beliefs are shared by both leaders and followers. Zhu (2004) believes in ethical leaders who behave morally and always tend to create a healthy environment and organizational culture to grow ethical behaviors inside the organization(Zhu, May, & Avolio, 2004). Above all, researchers in this field point out several definitions of leadership, but to what extent, leadership is defined or limited by its cultural context (Wallis, 2002). In reality, the meeting will be more effective if it is led by the transitional or charismatic leadership. Therefore, the author proposes:

Hypothesis 1: Leadership significantly affects meeting effectiveness.

Besides leadership, internal communication assists to transform information more specifically and effectively.

#### 2.1.3. Internal Communication

Internal communication is an essential process by which people exchange information, create relationship and build organizational culture and values as well. It is somehow called employee communication (Deetz, 2001; Men, 2014). Moreover, Martic (2014) emphasizes "Through internal communication, executives "pilots" the organization, as well as assure and guide employees to follow the mission and goals, encourage loyalty, enhance employees to identify with the organization, increase their motivation and satisfaction with their work, develop mutual positive relationships between employees and the impact on the socialization of employees and organizational culture." (Martic, 2014). Above all, the best method for facilitating employees to gain specific goals is face-to-face communication (Okanovic, Stefanovic, & Suznjevic, 2014).

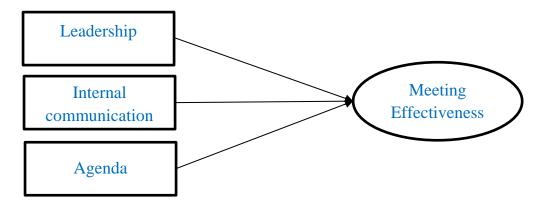
Even though, several blocks in communication happen such as age, gender, previous history of organization, distrust in management, regional differences and so far (Smith & Mounter, 2008). If it is symmetrical, it has the positive effect on the relationship between employees and their organization which in turn leads to employee advocacy. Men (2014) also claims that there is a linkage among leadership, communication and employee outcomes which positively cultivates the quality of this relationship(Men, 2014; Men & Jiang, 2016). If communication is effective, it plays as an useful weapon for an organization (Ruck & Welch, 2012; M. Welch, 2011).

Communication behaviors have an indirect contribution to the success of the company through employee attitudes (Mazzei, 2010). Furthermore, effective communication will foster the closer relationship between senior managers and employees (M. Welch, 2011). Especially, in the change process, along with commitment, social and cultural values, it plays a key role in which employees share information, build relationship and make things meaningful (Linke & Zerfass, 2011; Men & Stacks, 2014). From the same view point, Daly (2002) strengthens that internal communication is also a key issue with regard to how successful change management programs are performed (Daly, 2002). In the process of constructing a culture of

transparency in an organization between management and employees, face-to-face communication is one of the important means of internal communication(Mishra, Lois Boynton, & Mishra, 2014). Mishra (2014) and Vercic (2012) strongly state that the executives choose communication strategies in the aim of building trust and engagement with employees and actually, they consider internal communication as a management function in charge of intra-organizational communication (Mishra et al., 2014; Vercic, Vercic, & Sriramesh, 2012). And therefore, this is the proposition of the relationship between international communication and meeting effectiveness.

Hypothesis 2: Internal communication significantly affects meeting effectiveness.

It is unavoidable that internal communication may cause conflicts. How to manage conflicts is considered as art and science. From the perspective of conflict literature, substantive conflict is highly recommended.


#### **2.1.5 Agenda**

Agenda is another meeting issue that need to be concerned because it affects member preparation, time-use effectiveness and finally, meeting effectiveness (Nixon & Littlepage, 2014). Depending on agenda-based meeting management, an agenda enables meeting leaders to manage one or more meetings for locally-located participants, remote participants or both (Butt, 2006).

Basically, an agenda makes teamwork more task-focused and issue-focused. It is viewed as the "purchase point" decision for team members (Inglis & Weaver, 2000). A formal meeting agenda brings meeting participants or members involved specific information about the structure of a meeting time, place, topics related, or other preparatory work (D. D. Welch, 2008). Moreover, it keeps the meeting happening in the correct sequence and covering the right topics. There are a couple of benefits for either the chair of the meeting to make sure the agenda is correct or participants to prepare for a meeting (Baker, 2010). Above all, an agenda in advance is indispensable to meeting effectiveness. As a result, the proposition is suggested as:

*Hypothesis 3: Agenda significantly affects meeting effectiveness.* 

To sum up, from previous studies of the meeting literature, it seems that there are three dominant factors affecting meeting effectiveness in the context of Vietnamese organizations as the author's suggestion in the following conceptual model.



The conceptual model

#### 2.2 Method and Results

#### 2.2.1 Data Collection

The data for the research is based on the survey of one hundred and fifty-seven participants who are working at about 31 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. Specifically, they all are subordinates with various titles from middle managers to staffs, but not in the top management board. In other words, participants are those who lead a meeting, but still are led by other meeting organizers. The questionnaires included five variables: meeting effectiveness, agenda, leadership, substantive conflict and internal communication and were distributed as hard copies that required handwritten responses. These questions contained 30 items using five-point Likert scale: totally disagree, disagree, neutral, agree, totally agree. A total of completed 157 questionnaires performed within five months in Ho Chi Minh City and Kien Giang in southern Vietnam were returned and valid. Quantitative research is conducted by non-probability sampling.

#### 2.2.2 Data Analysis and Results

To ensure the items in the questionnaire and the model to be valid and reliable, a part of the questionnaires is conducted as a pilot test for testing the clarity of contents and misspelling. Then, one hundred and fifty-seven participants are surveyed. The result is applied SPSS software with the following steps: Statistic analysis; evaluation of Cronbach alpha for each factor; EFA, then used Amos to analyze SEM model based on the EFA's result.

The result of descriptive statistics shows that it ranges with mean from 3.55 to 4.17 (*Table 1*).

**Table 1. Descriptive statistics (MET)** 

**Descriptive Statistics** 

|                                                                                     | N    | Minimum | Maximum | Mean | Std. Deviation |
|-------------------------------------------------------------------------------------|------|---------|---------|------|----------------|
| LDS1. In the meeting, the leader will express the objective opinion with followers. | 249  | 1       | 5       | 3.92 | .824           |
| LDS2. In the meeting, the leader will remain                                        |      |         |         |      |                |
| impartial rather than speaking out and expressing                                   | 249  | 1       | 5       | 3.88 | .882           |
| his/her views.                                                                      |      |         |         |      |                |
| LDS3. In the meeting, the leader will express the                                   | 0.40 | 4       | _       | 0.07 | 000            |
| non-conservative opinion with followers.                                            | 249  | 1       | 5       | 3.87 | .899           |
| LDS5. In the meeting, the leader will support and                                   | 0.40 | 4       | _       | 4.00 | 045            |
| encourage followers to express their ideas.                                         | 249  | 1       | 5       | 4.03 | .815           |
| LDS6. In the meeting, the leader will foster group                                  | 240  | 4       | _       | 4.40 | 770            |
| goals.                                                                              | 249  | 1       | 5       | 4.16 | .770           |
| LDS7. In the meeting, the leader will                                               |      |         |         |      |                |
| communicate a high degree of confidence in the                                      | 249  | 1       | 5       | 3.86 | .828           |
| followers' ability to meet expectations.                                            |      |         |         |      |                |
| LDS8. In the meeting, the leader will express high                                  | 249  | 1       | 5       | 4.04 | .756           |
| performance expectations for followers.                                             | 249  | '       | 5       | 4.04 | .756           |
| LDS9. In the meeting the leader provides                                            | 249  | 1       | 5       | 3.83 | .840           |
| recognition/rewards when others reach their goals.                                  | 249  | '       | 3       | 3.03 | .040           |
| IC1. This company encourages differences of                                         | 249  | 1       | 5       | 3.81 | .843           |
| opinions.                                                                           | 249  | '       | 5       | 3.01 | .043           |
| IC2.Most communication between management                                           |      |         |         |      |                |
| and other employees in this organization can be                                     | 249  | 1       | 5       | 3.77 | .834           |
| said to be two-way communication.                                                   |      |         |         |      |                |
| IC3. Your leader makes you feel comfortable                                         | 249  | 1       | 5       | 3.82 | .849           |
| working with him/her.                                                               | 249  | '       | 3       | 3.02 | .049           |
| IC4. You would feel comfortable working with                                        | 249  | 1       | 5       | 3.76 | .840           |
| your leader.                                                                        | 249  | '       | 3       | 3.70 | .040           |
| AGEN3. A written agenda is provided before the                                      | 249  | 1       | 5       | 4.01 | .950           |
| meetings.                                                                           | 249  | '       | 3       | 4.01 | .930           |
| AGEN4. Overall, I am satisfied with the meeting                                     | 249  | 1       | 5       | 3.79 | .791           |
| process.                                                                            | 243  | '       |         | 3.19 | .791           |

| AGEN6. A verbal agenda is provided at the meetings.                                                      | 249 | 1 | 5 | 3.86 | .866 |
|----------------------------------------------------------------------------------------------------------|-----|---|---|------|------|
| MET1.When the meeting is finally over, you feel satisfied with the results.                              | 249 | 1 | 5 | 3.75 | .815 |
| MET2.The meeting states each problem with a clear solution.                                              | 249 | 1 | 5 | 3.76 | .835 |
| MET3.Most of conflicts raising in the meeting are solved satisfactorily.                                 | 249 | 1 | 5 | 3.57 | .863 |
| MET4.After the meeting, you achive your work goals.                                                      | 249 | 1 | 5 | 3.94 | .793 |
| MET5.After the meeting, you get your leader's understanding about your difficulties.                     | 249 | 1 | 5 | 3.63 | .893 |
| MET6.After the meeting, you receive your leader's instruction and sympathy with what you are fulfilling. | 249 | 1 | 5 | 3.73 | .855 |
| MET7.The meeting provides you with an opportunity to acquire useful information.                         | 249 | 1 | 5 | 3.93 | .756 |
| Valid N (listwise)                                                                                       | 249 |   |   |      |      |

EFA factor analysis is classified into 2 steps. While the first step is for independent variables, the second step is for the dependent variable. The first step, 3 independent variables are included in EFA factor analysis with principal components method and rotation varimax. KMO and Bartlett's test is significant (p<.001) and Kaiser-Meyer-Olkin Measure of Sampling Adequacy equal to 0.917 (>0.5) (*Table 2*).

**Table 2 - KMO and Bartlett's Test (MET)** 

#### **KMO** and Bartlett's Test

| Kaiser-Meyer-Olkin | Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |     |  |
|--------------------|--------------------------------------------------|-----|--|
| Bartlett's Test of | Bartlett's Test of Approx. Chi-Square            |     |  |
| Sphericity         | Df                                               | 105 |  |
|                    | Sig.                                             |     |  |

After Rotation method Varimax with Kaiser Normalization, 15 items of independent variables are grouped into 3 groups. There actually exits 3 groups with 15 items which are named as Leadership for group 1, Internal communication for group 2 and Agenda for group 3. Meeting effectiveness contains 7 items and is also named meeting effectiveness.

The evaluation of Cronbach alpha after EFA analysis for 3 factors: Leadership, Internal communication and Agenda are simultaneously at .917; .890; and .751 (*Table 3*). They all are accepted.

**Table 3 – EFA Result (MET)** 

|                |        | Component |        |
|----------------|--------|-----------|--------|
|                | 1      | 2         | 3      |
| LDS7           | .737   |           |        |
|                | .733   |           |        |
| LDS9           | .714   |           |        |
| LDS3           | .705   |           |        |
| LDS6           | .700   |           |        |
| LDS8           | .689   |           |        |
| LDS2           | .688   |           |        |
| LDS1           | .676   |           |        |
| IC03           |        | .848      |        |
| IC04           |        | .823      |        |
| IC02           |        | .763      |        |
| IC01           |        | .633      |        |
| AGEN3          |        |           | .835   |
| AGEN6          |        |           | .750   |
| AGEN4          |        |           | .647   |
| Eigenvalue     | 8.037  | 1.166     | 1.009  |
| Cumulative     | 31.406 | 52.598    | 68.079 |
| Cronbach Alpha | .917   | .890      | .751   |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Next, the dependent variable "Meeting effectiveness" is evaluated by KMO and Barlett's Test and EFA analysis. The result is that the evaluation of Cronbach alpha for dependent variable "Meeting effectiveness" is .912 which is also accepted. Furthermore, KMO and Bartlett's test is significant (p<.001) and Kaiser-Meyer-Olkin Measure of Sampling Adequacy equals to 0.902 (>0.5) and factor loadings are all more than .50.

**Table 4 – KMO and Bartlett's Test (MET)** 

| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | .902     |
|--------------------------------------------------|----------|
| Bartlett's Test of Sphericity Approx. Chi-Square | 1048.802 |

| Df   | 21   |
|------|------|
| Sig. | .000 |

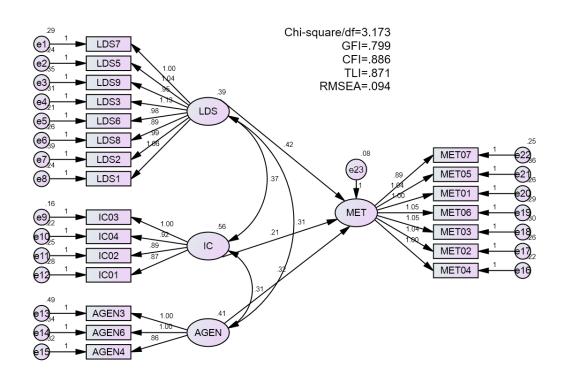
**Table 5 – Component Analysis (MET)** 

|       | Initial | Extraction |
|-------|---------|------------|
| MET01 | 1.000   | .661       |
| MET02 | 1.000   | .680       |
| MET03 | 1.000   | .667       |
| MET04 | 1.000   | .694       |
| MET05 | 1.000   | .626       |
| MET06 | 1.000   | .661       |
| MET07 | 1.000   | .606       |

Extraction Method: Principal Component Analysis.

#### CFA Factor Analysis

This result shows that the conditions are stated as follow: P < 0.05; CFI, GFI  $\geq 0.8$  and RMSEA is more than 0.08. They all meet the requirements. Considering the above conditions, the model is consistent with market data.


Figure 1-Results of SEM of research model (standardized) (MET)

#### CFA Factor Analysis

P=.000;

CFI = .886; TLI = .871; GFI = .799;

RMSEA = .094



**Table 6 – Standardized Regression Weights (MET)** 

|       |   |      | Estimate | S.E. | C.R.   | P   | Label |
|-------|---|------|----------|------|--------|-----|-------|
| MET   | < | LDS  | .417     | .102 | 4.103  | *** |       |
| MET   | < | IC   | .214     | .064 | 3.350  | *** |       |
| MET   | < | AGEN | .316     | .085 | 3.739  | *** |       |
| LDS7  | < | LDS  | 1.000    |      |        |     |       |
| LDS5  | < | LDS  | 1.044    | .079 | 13.194 | *** |       |
| LDS9  | < | LDS  | .951     | .083 | 11.460 | *** |       |
| LDS3  | < | LDS  | 1.133    | .088 | 12.943 | *** |       |
| LDS6  | < | LDS  | .985     | .075 | 13.187 | *** |       |
| LDS8  | < | LDS  | .894     | .074 | 12.056 | *** |       |
| LDS2  | < | LDS  | .994     | .087 | 11.396 | *** |       |
| LDS1  | < | LDS  | 1.060    | .080 | 13.266 | *** |       |
| IC03  | < | IC   | 1.000    |      |        |     |       |
| IC04  | < | IC   | .924     | .056 | 16.602 | *** |       |
| IC02  | < | IC   | .892     | .056 | 15.812 | *** |       |
| IC01  | < | IC   | .873     | .058 | 15.016 | *** |       |
| AGEN3 | < | AGEN | 1.000    |      |        |     |       |
| AGEN6 | < | AGEN | .997     | .105 | 9.522  | *** |       |
| AGEN4 | < | AGEN | .862     | .094 | 9.153  | *** |       |
| MET04 | < | MET  | 1.000    |      |        |     |       |
| MET02 | < | MET  | 1.039    | .074 | 13.985 | *** |       |
| MET03 | < | MET  | 1.049    | .077 | 13.543 | *** |       |
| MET06 | < | MET  | 1.047    | .077 | 13.681 | *** |       |
| MET01 | < | MET  | 1.004    | .073 | 13.801 | *** |       |

|       |   |     | Estimate | S.E. | C.R.   | P   | Label |
|-------|---|-----|----------|------|--------|-----|-------|
| MET05 | < | MET | 1.040    | .081 | 12.819 | *** |       |

Based on the results in *Table 6*, the parameters (standardized) are statistically significant (p<0.05). According to the regression weight among factors shown, all three factors including Leadership, Internal communication and Agenda have significant effects on Meeting effectiveness with weight of .417, .214 and .316 and P-value equals to .000.

The findings show practical meaning of meeting effectiveness in the context of Vietnamese organizations. Empirically, there are three significant factors that mainly affect meeting effectiveness are Leadership, Internal communication and Agenda.

#### 2.3 Concluding remarks

Meetings happen frequently in every organization for several purposes such as fulfilling vital goals, making changes and exchanging ideas. While to most working people, meetings seem to be time and effort wasters, meeting effectiveness brings a lot of benefits for organizational members from several past studies. It is evident that meeting effectiveness is closely related to goal attainment and decision satisfaction. Therefore, meetings need be improved in an effective and efficient way so that subordinates make more contributions and increase commitment to their workplace.

It is found that meeting effectiveness is significantly influenced by the three dominant factors consisting of Leadership, Internal communication and Agenda. Whether the meeting is effective or not, it depends on the meeting leaders' guide. Actually, leadership plays a very important role in transforming, motivating and enhancing subordinates' actions and ethical aspirations. Subordinates surely become more committed to the organization when they are working with inspirational leaders who willingly instruct them in uncertainty and encourage their abilities and talents(Bass & Riggio, 2006). That's why leadership strongly affects meeting effectiveness in reality.

Besides that, internal communication is an essential process by which people exchange information, create relationship and build organizational culture and values

as well. It is somehow called employee communication (Deetz, 2001; Men, 2014). Above all, the best method for facilitating employees to gain specific goals is face-to-face communication (Okanovic et al., 2014). That is evident that internal communication also strongly affects meeting effectiveness.

Above all, Agenda is another meeting issue that need to be concerned because it affects member preparation, time-use effectiveness and finally, meeting effectiveness. Therefore, Agenda plays one of the important roles that affect meeting effectiveness.

Empirically, in order to host a meeting effectively, meeting organizers should control their leadership in a proper way and solve thoroughly any conflicts raising in a constructive way.

In short, the results reveal three antecedents affecting meeting effectiveness: Leadership, Internal communication and Agenda. Leaders play the vital role in formulating an organization vision, making effective plans for vision implementation in reality as well as creating a healthy environment and organizational culture to grow ethical behaviors inside the organization. Their subordinates surely become more committed to the organization when they are working with inspirational leaders who willingly instruct them in uncertainty and encourage their abilities and talents. In addition, it is obvious that during the process of meeting, communicate internally and agenda also need to be concerned.

As mentioned above, according to Vietnamese culture, Vietnamese people are said to be collectivistic and high-context and there have the hierarchical management and the far power distance that influence their perception and operations. In the research process, the author finds out that meeting is the first important factor that needs to be studied due to its necessity in Vietnamese context in order to grow sustainably in the competitive world in the age of the revolution in information and communication technologies. Based on the findings of meeting effectiveness in this study with the important role of leadership, the author continues exploring the impact of job satisfaction as a mediator of the effects of meeting effectiveness on organizational commitment because it is obvious that the more effective the meeting, the more satisfied the subordinates feel (Burnfield et.al., 2006).

## CHAPTER 3: THE IMPACT OF JOB SATISFACTION AS A MEDIATOR OF THE EFFECTS OF MEETING EFFECTIVENESS ON ORGANIZATIONAL COMMITMENT

The result from the chapter 2 about the determinants to gain more effective meetings in the context of Vietnamese organizations is embedded for the research about the causal effect of meeting effectiveness on organizational commitment and the influence of job satisfaction on this relationship. During the researching process of meeting effectiveness, the author finds out that job satisfaction positively linked to meeting effectiveness. Besides that, in the literature of organizational commitment, there hasn't existed any study about the effect of meeting effectiveness on organizational commitment. Therefore, these concepts become an interesting study to be investigated in order to confirm the impact of job satisfaction on the relationship between meeting effectiveness and organizational commitment. Up to now, this topic is poorly understood with little or no previous published literature. These pieces of the rationale is the foundation for the study of "Critical factors for organizational commitment: An empirical study in Vietnam" has been conducted and published on Journal of Asian Finance, Economics and Business, volume 8, issue 5 (2021).

There has been increasing interest among researchers and scholars regarding the concepts of job satisfaction, leadership, meeting effectiveness and organizational commitment. In fact, these terms have become subjects of interest for most research papers due to the vital roles they play in the development of an organization. It is believed that there is an integrated relationship among them. In every organization, meetings are the common activities for the variety of purposes such as performing and reaching vital goals, communicating and exchanging ideas or making changes and the like. However, most meetings are considered to be ineffective even though much time and effort is devoted (J.A. Allen, 2012). Actually, from the literature of meeting effectiveness, leaders or meeting organizers play the very essential role (Nixon & Littlepage, 2014). For instance, whenever conflicts occur in the meeting, leaders or meeting organizers will be those who make the final decision. They control whatever activities during the discussing time. Through meetings, most conflicts happening at

work are resolved publicly. If given-solutions aim to improve team effectiveness, they will bring positive experience and benefits to related-problem members (Esquivel & Kleiner, 1996; Guetzkow & Gyr, 2015). Thanks to meetings, subordinates feel satisfied with their job because during interactions, they have chances to exchange information, clarify ideas, build common ground, contribute ideas and so forth (Meinecke & Lehmann-Willenbrock, 2015). In fact, effective meetings will encourage subordinates to contribute more efforts and increase more commitment to their workplace. In other words, if subordinates feel satisfied with their job, they will express their strong desire to keep the membership with their organization (Mowday et al., 1978; Steers, 1977).

This chapter aims to investigate the relationships among four factors: leadership, meeting effectiveness, job satisfaction and commitment. The author designs a survey based on the three research questions: How to make meetings more effective? How does meeting effectiveness affect organizational commitment? What will mediate the influence between meeting effectiveness and organizational commitment? This study contributes to the literature by investigating the relationship among four factors: leadership, meeting effectiveness, job satisfaction and organizational commitment.

## 3.1 Meeting effectiveness, Leadership, Job satisfaction and Organizational Commitment

#### **3.1.1** Meeting effectiveness

Generally, meetings play a vital role in organizations because they strategically produce consequential outcomes. They can also be considered as the central points for organizational activities that are essential for members (Jarzabkowski & Seidl, 2008). Typical kinds of meeting are listed as board meetings, committee meetings, departmental meetings and the like (Baker, 2010). If the meetings aim at facilitating employees and organizations to achieve their goals, they obviously become organizational tools that bring benefits (Rogelberg et al., 2006).

As a result, meeting effectiveness needs to be focused for gaining organizational members' higher performance. Actually, it was tightly involved in decision satisfaction and goal attainment. Several studies claim that to be effective, meetings need to be open, task-focused and impartial in communication (Allen et al., 2014; Nixon & Littlepage, 2014). To strengthen the same viewpoint, Bagire (2015) states that the effective meeting

shouldn't lack a clear purpose and a specific agenda, date, duration and materials and moreover emphasizes that whether a meeting is effective or not is mainly relied on the chairperson's central role in leading the meeting (Bagire et al., 2015). Even though factors such as irrelevant topics, excessive time length and poor or inadequate preparation may affect meeting productivity (Nicholas & Jay, 2001), the important one is the role of team leaders or facilitators who control a meeting (Volkema & Fred, 1996). Specifically, an organization is mainly influenced by the host who has the strongest power in making the final decision (Lestari et al., 2020; Nguyen et al., 2021; Nguyen & Khoa, 2020). It is referred as leadership.

#### Leadership

From the literature of meeting effectiveness, it can be inferred that the leaders play most essential role (Nixon & Littlepage, 2014). In current situation with a highly diverse workforce, leadership is the decisive factor for any organization's success. It needs to be trained and improved (Men, 2014). The common style is named "diversity-friendly" or "simpatico". Generally, a diversity leader works as a corporate manager, that is, he or she leads subordinates in an impartial, effective and communicative way. Moreover, such a diversity leader is expected to have those characteristics which are Sensitive, Impartial, Mediators, Patient, Amiable, Teachers, Involved, Communicators, and Optimistic (Hopkins & Hopkins, 1998).

According to Simola et al. (2012), transformational leadership is most recommended. Leaders of this type have the responsibilities to transform, motivate and encourage their subordinates in order to reach their expectation ethically at work (Bass & Riggio, 2006; Simola et al., 2012). In other words, it consists of four dimensions such as idealized influence, inspirational motivation, intellectual stimulation and individualized consideration (Judge & Bono, 2000; Simola et al., 2012). In fact, followers always expect to be under the control of inspirational leaders who direct them in uncertainty and facilitate them to perform their talents (Bass & Riggio, 2006).

Another type of leadership that is most preferred is charisma. Emotionality is the main dimension in this type, the nature of which is not very rational. For instance, problem-solving is not mostly based on authority but rather on personal characteristics

(Marjosola & Takala, 2000) and evidently, leaders are hard to effectively achieve goals by just only through followers' efforts and specialty (Andersen, 2006).

From another perspective, Fry et al. (2007) highly appreciates this type of servant leadership. Four main characteristics of this type are being a servant first, serving people's needs; serving through listening; serving through people building and serving through leadership creation (Fry et al., 2007). Sharing the same viewpoint, Men (2014) emphasizes transformational one in which leaders motivate followers by appealing to their higher-order needs and induce employees to look beyond their selfish interests for the sake of the group or the organization (Men, 2014).

Above all, leadership becomes the most decisive factor in an organization for its success and thus, leaders are suggested to be provided essential skills, for examples, formulating vision for an organization or setting effective objectives and plans to implement that vision in practice (Kirkpatrick & Locke, 1991). Obviously, in reality, the meeting will be more effective if it is led by the transitional or charismatic leadership. Therefore, the author posits:

Hypothesis 1: Leadership will be positively related to Meeting effectiveness.

#### 3.1.3 Job Satisfaction

The concept of job satisfaction has been defined in various ways. According to previous studies, it is expressed as an emotion that relates to a person's overall evaluation with respect to their work environment and is considered to be involved in five facets: pay, promotions, peers, superiors and the work itself (Alegre et al., 2015; Yousef, 2017; Bui et al., 2021). Similarly, Steel et al. (2018) emphasizes that job satisfaction is considered as the cognitive evaluation of the well-being quality of one's job, such as with pay, coworkers or supervisors (Steel et al., 2014; Nguyen, 2021; Johl et al., 2015). To put it in another way, some authors define it as the pleasurable emotional state originating from the organization's appraisal for those who are supported to achieve their job values (Lu et al., 2016). Furthermore, in Judge's study, he also confirms that job satisfaction is described as a pleasure or positive emotional state resulting from the appraisal of one's job or job experiences (Judge & Klinger, 2008). In fact, job attitudes and well-being have the relationship with meeting demands and therefore, the more effective the meeting is, the more satisfied the subordinates feel

(Burnfield et al., 2006; Cao et al., 2021). It also has an effect on turnover intention (Pratama, Suwarni, & Handayani, 2022). Importantly, it is an integrated factor of organizational behavior that needs to be interested, supervised and improved in order to avoid unmeasurable reactions of dissatisfaction (Masadeh et al., 2019).

As mentioned above, meeting effectiveness is positively linked to employee creativity through job satisfaction (Alonderiene & Majauskaite, 2016). Thus:

Hypothesis 2: Meeting effectiveness is positively related to Job satisfaction.

From previous studies, it is believed that there is a strong relationship between job satisfaction and organizational commitment.

#### 3.1.4 Organizational Commitment

Previously, there was an ambiguity in the concepts of organizational commitment and organizational identification. However, recently these terms have been discussed theoretically and tested empirically by Gautam et al. (2004). The researchers strongly conclude that whereas organizational identification is self-referential or selfdefinitional, commitment is not and that while identification is related to perceived similarity and shared fate with the organization, commitment is formed by exchangebased factors known as the relationship between the individual and the organization (Gautam, Dick, & Wagner, 2004a). Employees feel more attachment to the organizational goals and values toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980). As reviewed by Mowday et al. (1978), the concept of organizational commitment is defined as from the two main perspectives: behaviors and attitude. It is the relation between an individual's identification and involvement with the organization in which people work for. Moreover, organizational commitment can be symbolized by at least three elements "1) a strong belief in arid acceptance of the organization's goals and values; 2) a willingness to exert considerable effort on behalf of the organization; and 3) a strong desire to maintain membership in the organization" (Mowday et al., 1978; Steers, 1977) and is a process of identification (Reichers, 1985). This leads to the following hypotheses:

Hypothesis 3: Job satisfaction will be positively related to Organizational commitment.

Hypothesis 4: Job satisfaction will mediate the relationship between Meeting effectiveness and Organizational commitment.

Hypothesis 5: Meeting effectiveness is positively related to Organizational commitment.

#### 3.2. Method and Results

#### 3.2.1 Data Collection

The data for the research is based on the survey of two hundred and forty-nine respondents who are working at about 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. The firm's requirement is that they all are subordinates with various titles from middle managers to staffs, but not in the top management board. The questionnaires contained four factors: leadership, meeting effectiveness, job satisfaction and organizational commitment and were distributed as hard copies that required handwritten responses. Five-point Likert scale is used to measure those factors with 28 items: totally disagree, disagree, neutral, agree, totally agree. A total of completed 249 handouts of questionnaires performed within six months in Ho Chi Minh City and other neighboring provinces in southern Vietnam were returned and valid. Quantitative research is conducted by non-probability sampling and obtained by using EFA, CFA analysis and SEM.

#### 3.2.2 Data analysis and Results

To ensure the items in the questionnaire to be valid and reliable, the questionnaire is surveyed by two hundred and forty nine participants. The descriptive statistics result shows that it ranges with mean from 3.41 to. 4.16 and its standard deviations fluctuate from 0.727 to 0.976. Moreover, Cronbach's Alpha ratio is 0.916 (>0.8) with 28 items. (see *Table 7*)

**Table 7 – Descriptive Statistics (JOB)** 

**Descriptive Statistics** 

|                                                                                    |     |         |         |      | Std.      |
|------------------------------------------------------------------------------------|-----|---------|---------|------|-----------|
|                                                                                    | N   | Minimum | Maximum | Mean | Deviation |
| OGC1. You have warm feelings toward this organization as a place to live and work. | 249 | 1       | 5       | 3.74 | .856      |
| OGC2. You feel yourself to be part of the organization.                            | 249 | 1       | 5       | 3.68 | .857      |

| OGC3. In your work, you like to feel you are making         |      |   |   |      |      |
|-------------------------------------------------------------|------|---|---|------|------|
| some effort, not just for yourself but for the organization | 249  | 1 | 5 | 3.90 | .792 |
| as well.                                                    |      |   |   |      |      |
| OGC4. You really feel as if this organization's problems    |      |   |   |      |      |
| are your problems.                                          | 249  | 1 | 5 | 3.96 | .756 |
| OGC5. You feel a sense of pride working for this            |      |   | _ |      |      |
| organization.                                               | 249  | 1 | 5 | 3.85 | .804 |
| OGC6. In your work, you are willing to put in a great       |      |   |   |      |      |
| deal of effort beyond what is normally expected from        | 249  | 1 | 5 | 3.82 | .778 |
| you.                                                        |      |   |   |      |      |
| OGC7. The offer of a bit more money with another            |      |   |   |      |      |
| employer would not seriously make me think of               | 249  | 1 | 5 | 3.41 | .976 |
| changing my job.                                            |      |   |   |      |      |
| LDS2. In the meeting, the leader will remain impartial      | 0.40 | _ | _ | 0.00 |      |
| rather than speaking out and expressing his/her views.      | 249  | 1 | 5 | 3.88 | .882 |
| LDS3. In the meeting, the leader will express the non-      | 0.40 | 4 | _ | 0.07 | 000  |
| conservative opinion with followers.                        | 249  | 1 | 5 | 3.87 | .899 |
| LDS4. In the meeting, the leader will interact with         | 0.40 | 4 | _ | 2.00 | 004  |
| followers- social distance is low.                          | 249  | 1 | 5 | 3.90 | .821 |
| LDS5. In the meeting, the leader will support and           | 249  | 1 | 5 | 4.03 | .815 |
| encourage followers to express their ideas.                 | 249  | ' | 5 | 4.03 | .013 |
| LDS6. In the meeting, the leader will foster group goals.   | 249  | 1 | 5 | 4.16 | .770 |
| LDS7. In the meeting, the leader will communicate a         |      |   |   |      |      |
| high degree of confidence in the followers' ability to      | 249  | 1 | 5 | 3.86 | .828 |
| meet expectations.                                          |      |   |   |      |      |
| LDS8. In the meeting, the leader will express high          | 249  | 1 | 5 | 4.04 | .756 |
| performance expectations for followers.                     | 243  | ' | 3 | 4.04 | .730 |
| MET01. When the meeting is finally over, you feel           | 249  | 1 | 5 | 3.75 | .815 |
| satisfied with the results.                                 | 243  | ' | 3 | 3.73 | .010 |
| MET02. The meeting states each problem with a clear         | 249  | 1 | 5 | 3.76 | .835 |
| solution.                                                   | 210  |   |   | 0.70 | .000 |
| MET03. Most of conflicts raising in the meeting are         | 249  | 1 | 5 | 3.57 | .863 |
| solved satisfactorily.                                      | 2.0  | · |   | 0.01 | .000 |
| MET05. After the meeting, you get your leader's             | 249  | 1 | 5 | 3.63 | .893 |
| understanding about your difficulties.                      | 2.0  | · |   | 0.00 | .000 |
| MET06. After the meeting, you receive your leader's         | 249  | 1 | 5 | 3.73 | .855 |
| instruction and sympathy with what you are fulfilling.      | 2.0  | · |   | 0.70 | .000 |
| JOB1. You feel fairly satisfied with your present job.      | 249  | 1 | 5 | 3.69 | .727 |
| JOB2. Most days you are enthusiastic about your work.       | 249  | 1 | 5 | 3.61 | .770 |
| JOB3. Each day at work seems like it will never end.        | 249  | 1 | 5 | 3.59 | .783 |
| JOB4. You find real enjoyment at your work.                 | 249  | 1 | 5 | 3.69 | .781 |
| Valid N (listwise)                                          | 249  |   |   |      |      |

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .956             | 23         |

Next step is EFA factor analysis. It is classified into two phases. Phase one is for independent variables, and phase two is for the dependent one.

In the first phase, three independent variables which are leadership, meeting effectiveness and job satisfaction are included in EFA factor analysis with principal components method and rotation Varimax. Specifically, KMO equals to  $0.927 (\ge 0.5)$  and sig.000 ( $\le 0.05$ ), therefore Bartlett's Test is statistically significant. (*see Table 8*)

**Table 8 – KMO and Barlett's Test (JOB)** 

**KMO and Bartlett's Test** 

| Kaiser-Meyer-Olkin Measure of Sam | .927     |      |
|-----------------------------------|----------|------|
| Bartlett's Test of Sphericity     | 2656.934 |      |
|                                   | Df       | 120  |
|                                   | Sig.     | .000 |

After Rotation method Varimax with Kaiser Normalization, 16 items of independent variables are separated into three factors. Factor 1 consists of nine items named Leadership: LDS2, LDS3, LDS4, LDS5, LDS6, LDS7, LDS8. Factor 2 involves five items called Meeting effectiveness: MET1, MET2, MET3, MET5 and MET6. Last but not least, Job satisfaction is for Factor 3 containing four items: JOB1, JOB2, JOB3 and JOB4.

The evaluation of Cronbach's Alpha after EFA analysis for 3 factors: Leadership, Meeting effectiveness and Job satisfaction are simultaneously at .911; .886; and .888. They all are accepted. (see *Table 9*).

**Table 9 – EFA Result- Rotated Component Matrix (JOB)** 

Rotated Component Matrix<sup>a</sup>

|      | Component |  |  |  |  |  |  |
|------|-----------|--|--|--|--|--|--|
|      | 1 2 3     |  |  |  |  |  |  |
| LDS5 | .826      |  |  |  |  |  |  |
| LDS6 | .791      |  |  |  |  |  |  |

| LDS4           | .758   |        |        |
|----------------|--------|--------|--------|
| LDS7           | .705   |        |        |
| LDS3           | .677   |        |        |
| LDS2           | .670   |        |        |
| LDS8           | .657   |        |        |
| MET03          |        | .769   |        |
| MET02          |        | .765   |        |
| MET01          |        | .736   |        |
| MET05          |        | .736   |        |
| MET06          |        | .625   |        |
| JOB4           |        |        | .834   |
| JOB2           |        |        | .830   |
| JOB1           |        |        | .824   |
| JOB3           |        |        | .759   |
| Eigenvalue     | 8.328  | 1.686  | 1.106  |
| Cumulative     | 52.052 | 62.587 | 69.502 |
| Cronbach Alpha | 0.911  | 0.886  | 0.888  |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

In the second phase, the dependent variable "Organizational Commitment" is evaluated by EFA analysis. The result is that the evaluation of Cronbach's Alpha for dependent variable "Organizational Commitment" is .916 which is accepted. Furthermore, KMO equals to  $0.887~(\ge 0.5)$  and sig.001 ( $\le 0.05$ ) that also mean the Bartlett's Test is statistically significant and all factor loadings are more than 0.486. (see Table 10)

**Table 10 – KMO and Bartett's Test (JOB)** 

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | .887                                          |      |
|--------------------------------------------------|-----------------------------------------------|------|
| Bartlett's Test of Sphericity                    | elett's Test of Sphericity Approx. Chi-Square |      |
|                                                  | Df                                            | 21   |
|                                                  | Sig.                                          | .000 |

#### CFA Factor Analysis

P = .000;

CFI = .930; TLI = .921; GFI = .845;

RMSEA = .072.

Chi-square/df=2.300 LDS5 GFI=.845 CFI=.930 LDS6 TLI=.921 RMSEA=.072 LDS4 LDS LDS7 LDS3 LDS2 LDS8 MET03 MET02 OGC2 OGC OGC3 MET01 MET (e26) OGC4 MET05 OGC1 MET06 JOB OGC5 JOB4 JOB2 JOB1 JOB3

Figure 2 - Results of SEM of research model (standardized) (JOB)

**Table 11 – Regression Weights (JOB)** 

|       |   |     | Estimate | S.E. | C.R.   | P    | Label |
|-------|---|-----|----------|------|--------|------|-------|
| OGC   | < | LDS | .153     | .072 | 2.129  | .033 |       |
| OGC   | < | MET | .142     | .072 | 1.958  | .050 |       |
| OGC   | < | JOB | .672     | .060 | 11.231 | ***  |       |
| LDS5  | < | LDS | 1.000    |      |        |      |       |
| LDS6  | < | LDS | .955     | .061 | 15.663 | ***  |       |
| LDS4  | < | LDS | .978     | .066 | 14.738 | ***  |       |
| LDS7  | < | LDS | .926     | .069 | 13.464 | ***  |       |
| LDS3  | < | LDS | 1.026    | .074 | 13.860 | ***  |       |
| LDS2  | < | LDS | .905     | .075 | 11.981 | ***  |       |
| LDS8  | < | LDS | .838     | .063 | 13.309 | ***  |       |
| MET03 | < | MET | 1.000    |      |        |      |       |
| MET02 | < | MET | .980     | .071 | 13.734 | ***  |       |
| MET01 | < | MET | .946     | .070 | 13.562 | ***  |       |
| MET05 | < | MET | .959     | .078 | 12.295 | ***  |       |
| MET06 | < | MET | .965     | .074 | 13.082 | ***  |       |
| JOB4  | < | JOB | 1.000    |      |        |      |       |
| JOB2  | < | JOB | .905     | .054 | 16.840 | ***  |       |
| JOB1  | < | JOB | .841     | .051 | 16.364 | ***  |       |

|      |   |     | Estimate | S.E. | C.R.   | P   | Label |
|------|---|-----|----------|------|--------|-----|-------|
| JOB3 | < | JOB | .856     | .058 | 14.835 | *** |       |
| OGC5 | < | OGC | 1.000    |      |        |     |       |
| OGC1 | < | OGC | 1.062    | .068 | 15.659 | *** |       |
| OGC4 | < | OGC | .939     | .060 | 15.677 | *** |       |
| OGC3 | < | OGC | .978     | .063 | 15.535 | *** |       |
| OGC2 | < | OGC | 1.064    | .068 | 15.653 | *** |       |
| OGC6 | < | OGC | .879     | .064 | 13.640 | *** |       |
| OGC7 | < | OGC | .961     | .085 | 11.341 | *** |       |

The results of CFA factor analysis of the research model are presented in Figure 1. They are presented as follow: P=.000; CFI=.930; TLI=.921; GFI=.845; RMSEA=.072. According to the conditions with P<0.05; CFI, TLI,  $GFI \ge 0.8$  and  $RMSEA \le 0.08$ , they all meet the requirements. Considering the above conditions, the model is consistent with market data.

Table 11 represents that all parameters are statistically significant with P-value < 0.05. (see Table 11)

Mediating with Regression analysis

**Table 12 – Mediating with Regression Analysis (JOB)** 

| Parameter |     | Estimate | Lower | Upper | P    |
|-----------|-----|----------|-------|-------|------|
| MET <-    | LDS | .821     | .721  | .895  | .001 |
| JOB <-    | MET | .639     | .488  | .735  | .002 |
| OGC <-    | MET | .276     | .160  | .406  | .001 |
| OGC <-    | JOB | .711     | .583  | .820  | .003 |
| LDS5 <-   | LDS | .825     | .744  | .885  | .003 |
| LDS6 <-   | LDS | .834     | .740  | .889  | .002 |
| LDS4 <-   | LDS | .796     | .725  | .855  | .001 |
| LDS7 <-   | LDS | .755     | .669  | .828  | .002 |
| LDS3 <-   | LDS | .770     | .675  | .841  | .002 |
| LDS2 <-   | LDS | .691     | .543  | .798  | .002 |
| LDS8 <-   | LDS | .745     | .609  | .817  | .005 |
| MET03 <-  | MET | .787     | .718  | .838  | .004 |
| MET02 <-  | MET | .798     | .713  | .867  | .002 |
| MET01 <-  | MET | .789     | .707  | .848  | .003 |
| MET05 <-  | MET | .733     | .630  | .806  | .002 |
| MET06 <-  | MET | .776     | .666  | .848  | .002 |
| JOB4 <-   | JOB | .891     | .848  | .930  | .001 |
| JOB2 <-   | JOB | .818     | .736  | .873  | .003 |
| JOB1 <-   | JOB | .805     | .731  | .865  | .002 |
| JOB3 <-   | JOB | .760     | .656  | .839  | .002 |

| Parame | eter |     | Estimate | Lower | Upper | P    |
|--------|------|-----|----------|-------|-------|------|
| OGC5   | <    | OGC | .827     | .754  | .880  | .002 |
| OGC1   | <    | OGC | .826     | .758  | .876  | .002 |
| OGC4   | <    | OGC | .823     | .747  | .882  | .001 |
| OGC3   | <    | OGC | .820     | .747  | .874  | .001 |
| OGC2   | <    | OGC | .826     | .750  | .882  | .001 |
| OGC6   | <    | OGC | .749     | .584  | .852  | .004 |
| OGC7   | <    | OGC | .657     | .559  | .737  | .002 |

Finally, in analysis of the moderating effect of JOB on MET and OGC, there is a significant total effect of Leadership on Meeting effectiveness with P-value .001 and its regression weight is .821 with .721 lower bound to .895 upper bound. Next, regression weight of Meeting effectiveness on Job satisfaction is .638 with P-value .002 and its lower bound and upper bound is .488 and .735. Furthermore, while the total effect of Meeting effectiveness on Organizational commitment with P-value .001 is .276, .160 lower bound and .406 upper bound, that of Job satisfaction on Organizational commitment with P-value .003, .583 lower bound and .820 upper bound. (*see Table 12*).

#### 3.2.3 Discussion

It is found that leadership positively affects meeting effectiveness. As the definition of leadership, it is referred as a process to influence organizational members to achieve their goals or results (Alonderiene & Majauskaite, 2016). In real organizational practices, meetings are led by meeting organizers or leaders who control them and make final decisions for any matters or conflicts occurring during the meeting. Apparently, whether meetings are effective or not depends on meeting organizers or leaders. As supposed by hypothesis 2 that meeting effectiveness will be positively related to job satisfaction, it surely significantly affects job satisfaction. According to Burnfield (2006), perceived meeting effectiveness has a strong and direct effect on subordinates' attitude and well-being. Meetings play the vital role to coordinate and integrate employee work activities and fulfill their interdependent tasks (Burnfield, Steven, Rogelberg, Leach, & Warr, 2006). The findings also show that job satisfaction has a positive influence on organizational commitment. From previous studies, the concept of employee commitment to organizations is defined in several ways and as reviewed by Mowday et.al (1978), it is mainly related to subordinates' behaviors and

attitude. That's why job satisfaction works as a predictor of organizational commitment. With these interactive effects, job satisfaction mediates the relationship between meeting effectiveness and organizational commitment. To some extent, it is explained that whenever subordinates feel satisfied with their job through meetings, they will more commit to their organizations.

#### 3.3. Concluding remarks

The findings shed light on the practical meaning of organizational commitment in the context of Vietnamese organizations. Meeting effectiveness favorably contributes to organizational commitment. An important issue for consideration, however, is that ensuring such effectiveness necessitates that leadership play a central role in this matter and that job satisfaction be considered the decisive factor in elevating commitment to an organization. The results also emphasized the importance of meetings in workplaces. To foster job satisfaction among subordinates, leaders should thoroughly resolve every conflict or problem in meetings. This approach is responsible for the significant influence of meeting effectiveness on job satisfaction. Whether meetings are effective or not rests primarily on the performance of leaders or meeting organizers; that is, leadership positively affects meetings. Previous studies confirmed that highly committed employees may perform better than less committed ones. If employees are gratified with their work, they become more committed to their organizations.

Actually, job satisfaction is defined as the pleasurable emotional state (Lu et.al., 2016). This is an effect of turnover intention. To achieve the state of satisfaction, five main facets that are highly concerned are pay, promotion, peers, superiors and the work itself. Moreover, previous studies emphasize that high performance is surely fulfilled by highly committed employees that less committed one (Mowday, Steers, & Porter, 1978; Steer, 1977). It is the relationship between individual and the organization. It shows the strong belief in and acceptance of the organization's goals and values, a willingness of considerable effort and a strong design to maintain membership to the organization (Steer, 1977).

As a result, for the missions of the organizations' sustainable development, the author decides to keep conducting the two more studies about the factors affecting

organizational commitment of how to motivate employees to strengthen their job performance and increase more commitment to their organization so that the organizations can achieve better profitable benefits, based on these these internal resources.

## CHAPTER 4: FACTORS AFFECTING ORGANIZATIONAL COMMITMENT

For the more adequacy of the fully-detailed model, the author continues to study the antecedents that strengthen organizational commitment. There are several studies about organizational commitment worldwide. However, those factors such as intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support haven't been grouped and tested in Vietnamese context. This reason encourages the author to do in this chapter about "Building Organizational Commitment: The Analysis of Indicators" and "A model of antecedents strengthening organizational commitment". There are two publications. While the one is on Academy of Strategic Management Journal, vol. 19, issue 6, 2020, the other is on Management Science Letters, vol.11, 2021.

Moreover, with the same target of investigating what factors affecting organizational commitment, the author conducts two new more factors including internal communication and leadership in order to test its relationship with organizational commitment within this chapter. This next study is also published on the first international conference on science, economics and society studies of UEF 2020 titled "Factors affecting organizational commitment" (ISBN 978-604-79-2604-6).

The two approaches have been done as follow.

# 4.1. The research of the impact of internal motivation, external motivation, employee voice, organizational identification and perceived organizational support on organizational commitment

The concept of organizational commitment has received increased attention from scholars and practitioners over the world. They have researched and conducted several social experiments to increase employee commitment to organizations (Moon, 2000a; Steers, 1977). Employees are considered as organization's assets; therefore, they play the central role for several reasons. Buchanan (1974) and Wall (1980) confirm that employees feel tightly closed to goals and values of the organization toward organizational commitment. Previous researches also reveal that high performance is

surely fulfilled by highly committed employees than less committed ones (Mowday et al., 1978; Steers, 1977). Put it another way, according to Yousef et. al (2017), organizational commitment consists of three main categories. The first type is affective commitment relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017). In fact, organizational commitment has been defined and conducted in a variety of research perspectives and methods.

For contributing more empirical results, the purpose of this paper aims to propose a model of antecedents strengthening organizational commitment in the context of Vietnamese organizations in order to help leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization. The result is collected by the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at about 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business.

To begin with, the paper reviews six main concepts including organizational commitment, intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support. Next, Five-point Likert scale is used to measure those factors with two hundred and forty-nine fulltime Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. Finally, quantitative research is obtained by using EFA, CFA analysis and Structural equation modeling.

The findings show that three prominent factors positively affecting organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification.

#### **4.1.1 Organizational Commitment**

Previously, there was an ambiguity in the concepts of organizational commitment and organizational identification. In recent years, these terms have been discussed theoretically and tested empirically by Gautam et.al (2004). These authors

strongly conclude that whereas organizational identification is self-referential or selfdefinitional, commitment is not and that while identification is related to perceived similarity and shared fate with the organization, commitment is formed by exchangebased factors known as the relationship between the individual and the organization (Gautam et al., 2004a). Employees feel more attachment to the organizational goals and values toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980). As reviewed by Mowday et.al (1978), the concept of organizational commitment is defined as from the two main perspectives: behaviors and attitude. It is the relation between an individual's identification and involvement with the organization in which people work for. Moreover, organizational commitment can be symbolized by at least there elements "1) a strong belief in arid acceptance of the organization's goals and values; 2) a willingness to exert considerable effort on behalf of the organization; and 3) a strong desire to maintain membership in the organization" (Mowday et al., 1978; Steers, 1977) and is a process of identification (Reichers, 1985). From recent researches, according to Yousef et. al (2017), organizational commitment is originated from 3 distinct categories. The first type is affective commitment relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017).

#### 4.1.2 Organizational Identification

It's quite different from organizational commitment. Organizational identification is self-definitional or self-referential (Gautam, Dick, & Wagner, 2004b). The first term that needs to be explained is identification. It is the role's defining essence defined by an individual (Ashforth, Harrison, & Corley, 2008). From his study, Gautam (2004) finds out that organizational identification refers to the individuals' definition of him or herself (Gautam et al., 2004a) and is defined as the perception of oneness or belongingness with an organization where he or she tightly involves in and shares with its successes and failures (Mael & Ashforth, 1992). To some extent, the concept of identification is related to the three dimensions: oneness, loyalty and shared characteristics. While oneness is the share of common goals with others in an

organization, loyalty is shown in terms of attitudes and behaviors protecting the organization. Shared characteristics are what individuals and others in the organization have in common (Lee, 1970). Put it another way, organizational identification is the part of more general definition as "identification with a psychological group which is perceptual rather than affective (Albert, Ashforth, & Dutton, 2000; Mael & Ashforth, 1992) and it stays when an individual feels proud of being a part of a group and highly appreciates the group's values and achievements without gaining them as his or her possession (Charles O'Reilly & Chatman, 1986). Importantly, organizational identification has been criticized to help strengthen a sense of meaning, belonging and control at the workplace (Kreiner & Ashforth, 2004). So far forth as Knippenberg's conclusion, the fundamental difference between identification and commitment originated from the relationship between individual and organization is that whereas identification relates to psychological oneness, commitment shows a bond between separate psychological entities (Edwards, 2005; Knippenberg & Sleebos, 2006). Therefore, the author posits:

H1: Organizational identification will positively affect Organizational commitment.

Besides this, motivation also plays an essential role in forming employees' commitment with an organization.

#### **4.1.3** Internal and External Motivation

There have been some previous studies on motivation and its relationship with organizational commitment (Moon, 2000b). Motivation term is commonly defined as a sense of achievement, recognition for high performance, responsibility and individual development and considered as a psychological process of the exchange between individual and environment (Jones & Lloyd, 2005; Latham & Pinder, 2005). Two main drivers of motivation are intrinsic and extrinsic (Gagne, Forest, M.H., & Aube, 2010; Kuvass, Buch, Weibel, Dysvik, & Nerstad, 2017; Moon, 2000b). Whereas the former relates to the state of interest and enjoy, the latter is about doing something for instrumental reasons (Gagne et al., 2010; Katzell & Thompson, 1990). In other words, while intrinsic motivation is linked to work engagement, positive outcomes, productivity, extrinsic one is built by visible incentives (Kuvass et al., 2017).

From another perspective known as Self-Determination theory, Garne (2015) reveals a multidimensional definition of motivation that consists of the two main forms: autonomous and controlled motivation. The author prefers autonomous, because while autonomous motivation is about individuals' optimal functioning such as well-being, performance etc., controlled one is less beneficial (Gagne, Forest, & Vansteenkiste, 2015).

However, above all, most researchers believe that the role of stimulating employees to raise their voice doesn't really relate to money and recognition. Those who have a sense of achievement or job importance are likely to have more commitment to an organization. That's the reason for most authors to confirm that intrinsic drivers dominate extrinsic rewards (Jones & Lloyd, 2005; Kuvass et al., 2017; Moon, 2000b; Tremblay, Blanchard, Taylor, Pelletier, & Villeneuve, 2009). This leads to the following hypotheses:

H2: Internal motivation will positively affect Organizational commitment.

H3: External motivation will positively affect Organizational commitment.

Motivation cannot be existed without receiving supports from the organization. Perceived organizational support is supposed as the leverage for stronger organizational commitment.

#### 4.1.4 Perceived Organizational Support

Perceived organizational support (POS) is considered as the antecedent increasing employee's attachment to the organization (R. Eisenberger & Huntington, 1986; Shore & Wayne, 1993). It results from organization's treatment to an employee in a wide variety of situations such as illnesses, mistakes, performance and so forth in order to make employee's job interesting and useful and meets the needs for praise and approval (R. Eisenberger & Huntington, 1986). Moreover, POS is considered as employees' perceptions of the organization's commitment which are relied on how the organization recognizes their contributions and support their well-being (Kim, Eisenberger, & Baik, 2016; Shore & Wayne, 1993). Having the same perspective, Eisenberger believes that POS relates to meeting employees' socio-emotional needs and the readiness the organization does to appreciate increased work endeavor (R. Eisenberger, Stinglhamber, Vandenberghe, Sucharski, & Rhoades, 2002). This term

becomes more interesting for recent studies because it positively affects job satisfaction and organizational commitment (Jaiswal & Dhar, 2016). POS will be stronger in case the organization assures to make an employee's job effective and decrease stressful situations (Rhoades & Eisenberger, 2002). The prominent beneficial influence of POS is that it creates among employees a feeling of obligation to repay the positive treatment they received from their organization (Caesens, Marique, Hanin, & Stinglhamber, 2015; R. Eisenberger, Fasolo, & LaMastro, 1990). Thus:

H4: Perceived organizational support will positively affect Organizational commitment.

Moreover, in order to partly contribute to the organizational outcome, employee voice also plays an important role.

#### **4.1.5** Voice

In the organizational science, the term voice has been defined in various ways. Farndale (2011) states that voice relates to employees' ability to affect the outcome of organizational decisions by giving them the chance to raise their ideas (Farndale, Rruiten, clare Kelliher, & Hailey, 2011). Traditionally, it is defined mostly as criticism of one's work organization but recently voice is defined as offering improvements, discussing problems in the workplace (Cosier, Dalton, & Taylor, 1991). In terms of employee voice, it is originated by several purposes such as rectifying a problem with management, offering a countervailing source of control to management, contributing to improve quality and outcomes, or suggesting long-term viability for organization(Tony, Adrian, Mick, & Peter, 2004).

In addition, based on Dyne's study, voice consists of two elements: employees' complaints or grievance at work to management and employees' participation in decision-making processes of the organization and is divided into two types: mandated voice and voluntary voice (Linn Van Dyne, Ang, & Botero, 2003). Similarly, Detert (2007) claims that voluntary voice considered as upward voice is preferred by communicating suggestions, information or strategies to management (Detert & Burris, 2007; Morrison, 2014). Levels of employee engagement are either directly or indirectly influenced by employee perceptions of voice behavior targeting at increasing job performance (Rees, Alfes, & Gatenby, 2013b). As the result, the author proposes:

H5: Voice will positively affect Organizational commitment.

#### 4.2 Methods and Results

#### **4.2.1 Data Collection**

The data for research is based on the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. All correspondents are subordinates with various titles from middle managers to staffs. The questionnaire was contained six constructs including organizational commitment, intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support and distributed as hard copies that required handwritten responses. Five-point Likert scale is used to measure those factors with 32 items: totally disagree, disagree, neutral, agree, totally agree.

A total of 280 handouts of the questionnaire were delivered within six months in Ho Chi Minh City and other neighboring provinces in southern Vietnam. However, only 249 handouts were returned and valid. Quantitative research is conducted by non-probability sampling and obtained by using EFA, CFA analysis and Structural Equation Modeling.

#### 4.2.2 Data analysis and Results

To ensure the items in the questionnaire to be valid and reliable, the questionnaire is surveyed by two hundred and forty nine participants. The descriptive statistics result shows that it ranges with mean from 3.41 to. 4.0 and its standard deviations fluctuate from 0.737 to 0.976. Moreover, Cronbach's Alpha ratio is 0.966 (>0.8) with 32 items. (see *Table 13*)

**Table 13 – Descriptive Statistics (OGC1)** 

**Descriptive Statistics** 

|                                                |     |         |         |      | Std.      |
|------------------------------------------------|-----|---------|---------|------|-----------|
|                                                | Ν   | Minimum | Maximum | Mean | Deviation |
| Ol01. You are proud to be an employee of the   | 240 | 1       | ۲       | 2.04 | 707       |
| organization.                                  | 249 | 1       | 5       | 3.81 | .737      |
| Ol02. You often describe yourself to others by |     |         |         |      |           |
| saying 'I work for this organization' or 'I am | 249 | 1       | 5       | 3.84 | .812      |
| from this organization.'                       |     |         |         |      |           |

| Ol03. You talk up this organization to your         | 249 | 1 | 5 | 3.60 | .888 |
|-----------------------------------------------------|-----|---|---|------|------|
| friends as a great company to work for.             | 243 | • |   | 0.00 | .000 |
| Ol04. You become irritated when you hear            |     |   |   |      |      |
| others outside the organization criticize your      | 249 | 1 | 5 | 3.62 | .922 |
| organization                                        |     |   |   |      |      |
| Ol05. You have warm feelings toward this            | 249 | 1 | 5 | 3.82 | .833 |
| organization as a place to work.                    | 243 | ' | 3 | 3.02 | .000 |
| Ol06. You would describe your organization as a     |     |   |   |      |      |
| large 'family' in which most members feel a         | 249 | 1 | 5 | 3.71 | .905 |
| sense of belonging.                                 |     |   |   |      |      |
| Ol07. You are willing to put in a great deal of     |     |   |   |      |      |
| effort beyond that normally expected to help this   | 249 | 1 | 5 | 3.99 | .868 |
| organization to be successful.                      |     |   |   |      |      |
| EV1. Leaders here at providing everyone with        | 249 | 4 | - | 4.00 | 022  |
| the chance to comment on proposed changes.          | 249 | 1 | 5 | 4.00 | .833 |
| EV2. Subordinates strongly express ideas.           | 249 | 1 | 5 | 3.73 | .784 |
| EV3. Leaders here at listening ideas and            | 249 | 1 | 5 | 3.96 | .805 |
| suggestions from subordinates.                      | 249 | ' | 5 | 3.90 | .005 |
| EV4. Leaders here at responding to suggestions      | 249 | 1 | 5 | 4.00 | .854 |
| from employees.                                     | 243 | • |   | 4.00 | .004 |
| IM01. Doing your job well gives you the feeling     |     |   |   |      |      |
| that you have accomplished something                | 249 | 1 | 5 | 3.96 | .750 |
| worthwhile.                                         |     |   |   |      |      |
| IM02. The things you do on your job are             | 249 | 1 | 5 | 3.93 | .762 |
| important to you.                                   | 249 | ' | 3 | 3.93 | .702 |
| IM03. You enjoy this work very much.                | 249 | 1 | 5 | 3.87 | .769 |
| IM04. IM04. You have fun doing your job.            | 249 | 1 | 5 | 3.82 | .797 |
| POS1. The organization is willing to extend         |     |   |   |      |      |
| itself in order to help you perform your job to the | 249 | 1 | 5 | 3.79 | .770 |
| best of my ability.                                 |     |   |   |      |      |
| POS2. Help is available from the organization       | 249 | 1 | 5 | 2.75 | .791 |
| when you have a problem.                            | 249 | 1 | 5 | 3.75 | .791 |
| POS4. The organization is willing to help you       | 240 | 4 | - | 2.70 | 775  |
| when you need a special favor.                      | 249 | 1 | 5 | 3.78 | .775 |
| POS5. The organization would understand if you      | 240 | 4 | - | 2.45 | 970  |
| were unable to finish a task on time.               | 249 | 1 | 5 | 3.45 | .879 |
| POS6. The organization really cares about my        | 240 | 1 | 5 | 2 40 | 007  |
| well-being.                                         | 249 | 1 | 5 | 3.49 | .907 |
| EM01. If you produce a high quality of work         | 240 | 4 | _ | 2.70 | 000  |
| output, you will lead to higher pay.                | 249 | 1 | 5 | 3.73 | .909 |
| EM04. Producing a low quality of work               | 249 | 1 | 5 | 3.71 | .911 |
| decreases your chances for promotion.               | 243 | ' | 5 | 3.71 | .511 |

| Ol01. You are proud to be an employee of the organization. | 249  | 1 | 5 | 3.74 | .856 |
|------------------------------------------------------------|------|---|---|------|------|
| Ol02. You often describe yourself to others by             |      |   |   |      |      |
| saying 'I work for this organization' or 'I am             | 249  | 1 | 5 | 3.68 | .857 |
| from this organization.'                                   |      |   |   |      |      |
| Ol03. You talk up this organization to your                | 249  | 1 | 5 | 2.00 | .792 |
| friends as a great company to work for.                    | 249  | ı | 5 | 3.90 | ./92 |
| Ol04. You become irritated when you hear                   |      |   |   |      |      |
| others outside the organization criticize your             | 249  | 1 | 5 | 3.96 | .756 |
| organization                                               |      |   |   |      |      |
| Ol05. You have warm feelings toward this                   | 0.40 | 4 | - | 0.05 | 00.4 |
| organization as a place to work.                           | 249  | 1 | 5 | 3.85 | .804 |
| Ol06. You would describe your organization as a            |      |   |   |      |      |
| large 'family' in which most members feel a                | 249  | 1 | 5 | 3.82 | .778 |
| sense of belonging.                                        |      |   |   |      |      |
| Ol07. You are willing to put in a great deal of            |      |   |   |      |      |
| effort beyond that normally expected to help this          | 249  | 1 | 5 | 3.41 | .976 |
| organization to be successful.                             |      |   |   |      |      |
| Valid N (listwise)                                         | 249  |   |   |      |      |

EFA factor analysis is the next step. It is analyzed in two phases. Phase one is for independent variables, and phase two is for the dependent one.

In the first phase, five independent variables which are intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support are included in EFA factor analysis with principal components method and rotation Varimax. Specifically, KMO equals to  $0.930 (\ge 0.5)$  and sig  $0.00 (\le 0.05)$ , therefore Bartlett's Test is statistically significant. (see Table 14)

**Table 14 – KMO and Bartlett's Test (OCG1)** 

# KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity Approx. Chi-Square 3789.035 Df 231 Sig. .000

After Rotation method Varimax with Kaiser Normalization, 22 items of independent variables are separated into five factors.

Component 1 consists of seven items that are named Organizational Identification: OI01, OI02, OI03, OI04, OI05, OI06, OI07. Component 2 involves

items called Perceived Organization Support: POS1, POS2, POS4, POS5, POS6. Similarly, component 3 mainly includes four items grouped as Employee Voice: EV1, EV2, EV3,EV4. Factor 4 includes 4 items IM01, IM02, IM03, IM04 named as Internal Motivations. Last but not least, External Motivaton is for component 5, containing 2 items: EM04, EM01.

The evaluation of Cronbach's Alpha after EFA analysis rotated for 5 factors: Organizational Identification, Perceived Organization Support, Employee Voice, Intrinsic Motivation and Extrinsic Motivation are simultaneously at .921; .860; .874; 0.861 and .740 (see *Table 15*).

**Table 15 – EFA Resutl-Rotated Component Matrix (OCG1)** 

|                |        |       | Component |       |       |
|----------------|--------|-------|-----------|-------|-------|
|                | 1      | 2     | 3         | 4     | 5     |
| OI05           | .785   |       |           |       |       |
| OI03           | .760   |       |           |       |       |
| OI04           | .704   |       |           |       |       |
| OI06           | .703   |       |           |       |       |
| Ol01           | .694   |       |           |       |       |
| OI07           | .663   |       |           |       |       |
| Ol02           | .608   |       |           |       |       |
| POS5           |        | .763  |           |       |       |
| POS2           |        | .694  |           |       |       |
| POS6           |        | .691  |           |       |       |
| POS4           |        | .658  |           |       |       |
| POS1           |        | .596  |           |       |       |
| EV3            |        |       | .779      |       |       |
| EV1            |        |       | .756      |       |       |
| EV2            |        |       | .728      |       |       |
| EV4            |        |       | .718      |       |       |
| IM03           |        |       |           | .734  |       |
| IM02           |        |       |           | .697  |       |
| IM04           |        |       |           | .668  |       |
| IM01           |        |       |           | .652  |       |
| EM04           |        |       |           |       | .808  |
| EM01           |        |       |           |       | .688  |
| Eigenvalue     | 10.895 | 1.584 | 1.277     | .988  | .884  |
| Cumulative     | 49.523 | 7.201 | 5.803     | 4.492 | 4.019 |
| Cronbach Alpha | .921   | .860  | .874      | .861  | .740  |

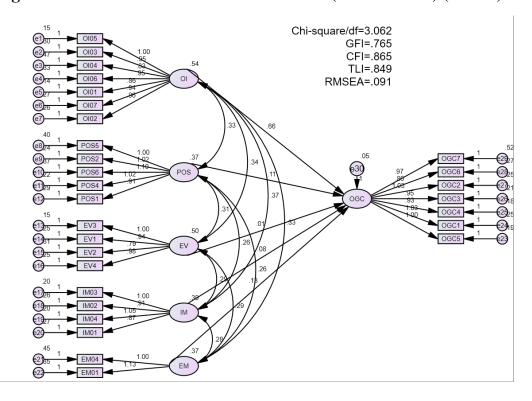
Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.a

a. Rotation converged in 7 iterations.

In the second phase, the dependent variable "organizational Commitment" is evaluated by EFA analysis. The result is that the evaluation of Cronbach's Alpha for dependent variable "Organizational Commitment" is .916 which is accepted. Furthermore, KMO equals to 0.887 ( $\geq$ 0.5) and sig. 0.00 ( $\leq$ 0.05) that also mean the Bartlett's Test is statistically significant and all factor loadings are more than 0.50 (see *Table 16*)

**Table 16 – KMO and Bartlett's Test (OCG1)** 


#### **KMO and Bartlett's Test** Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity 1201.707 Approx. Chi-Square

df 21 Sig. .000

.887

CFA Factor Analysis

Figure 3 – Results of SEM of research model (standardized) (OCG1)



**Table 17 – Regression Weights (OCG1)** 

|        |     | Estimate | S.E. | C.R.   | P    | Label |
|--------|-----|----------|------|--------|------|-------|
| OGC <  | OI  | .655     | .074 | 8.822  | ***  |       |
| OGC <  | POS | .107     | .075 | 1.423  | .155 |       |
| OGC <  | EV  | .010     | .054 | .176   | .860 |       |
| OGC <  | IM  | .085     | .080 | 1.062  | .288 |       |
| OGC <  | EM  | .126     | .088 | 1.427  | .153 |       |
| OI05 < | OI  | 1.000    |      |        |      |       |
| OI03 < | OI  | .953     | .059 | 16.142 | ***  |       |
| OI04 < | OI  | .834     | .068 | 12.307 | ***  |       |
| OI06 < | OI  | .953     | .061 | 15.621 | ***  |       |
| OI01 < | OI  | .862     | .045 | 19.002 | ***  |       |
| OI07 < | OI  | .944     | .057 | 16.525 | ***  |       |
| OI02 < | OI  | .858     | .055 | 15.718 | ***  |       |
| POS5 < | POS | 1.000    |      |        |      |       |
| POS2 < | POS | 1.023    | .092 | 11.120 | ***  |       |
| POS6 < | POS | 1.105    | .105 | 10.535 | ***  |       |
| POS4 < | POS | 1.019    | .090 | 11.281 | ***  |       |
| POS1 < | POS | .912     | .089 | 10.266 | ***  |       |
| EV3 <  | EV  | 1.000    |      |        |      |       |
| EV1 <  | EV  | .941     | .062 | 15.270 | ***  |       |
| EV2 <  | EV  | .785     | .062 | 12.751 | ***  |       |
| EV4 <  | EV  | .983     | .063 | 15.709 | ***  |       |
| IM03 < | IM  | 1.000    |      |        |      |       |
| IM02 < | IM  | .907     | .071 | 12.736 | ***  |       |
| IM04 < | IM  | 1.054    | .072 | 14.578 | ***  |       |
| IM01 < | IM  | .867     | .071 | 12.246 | ***  |       |
| EM04 < | EM  | 1.000    |      |        |      |       |
| EM01 < | EM  | 1.126    | .125 | 8.977  | ***  |       |
| OGC5 < | OGC | 1.000    |      |        |      |       |
| OGC1 < | OGC | 1.031    | .065 | 15.879 | ***  |       |
| OGC4 < | OGC | .928     | .057 | 16.390 | ***  |       |
| OGC3 < | OGC | .951     | .060 | 15.797 | ***  |       |
| OGC2 < | OGC | 1.033    | .065 | 15.876 | ***  |       |
| OGC6 < | OGC | .860     | .062 | 13.903 | ***  |       |
| OGC7 < | OGC | .969     | .081 | 11.966 | ***  |       |

The results of CFA factor analysis of the research model are presented in Figure 3. They are presented as follows: P=.000; CFI=.865; TLI=.849; GFI=.765; RMSEA=.091. According to the conditions with P<0.05; CFI,  $TLI\geq0.8$ ; GFI is approximately .756 and RMSEA is .091, they all meet the requirements. Considering the above conditions, the model is consistent with market data.

Based on the results in *Table 17*, the parameters (standardized) are statistically significant (p<0.05). There are four factors that have significant effects on Organizational Commitment are OI, POS, EM and IM. While P-value of OI is less than 5% with weight of 0.655, P-value of POS, EM and IM is approximately 15% and 30% with weight of 0.107, 0.126 and 0.085. Exceptionally, EV does not.

Specifically, when Organizational Identification goes up by 1 standard deviation, organizational commitment goes up by 0.655 standard deviation. Perceived Organization Support increases by 1 standard deviation, Organizational Commitment goes up by 0.107 and when Extrinsic Motivation goes up by 1 standard deviation, organizational commitment goes up by 0.126 standard deviation. Similarly, with weight of 0.085, Intrinsic Motivation has a positive effect on organizational commitment. Clearly, whenever Intrinsic Motivation goes up by 1 standard deviation, organizational commitment goes up by 0.085 standard deviation. (*see Table 17*)

#### **4.3** Concluding remarks

It is found that empirically, four antecedents mainly affecting organizational commitment are Organizational Identification, Perceived Organization Support, Extrinsic Motivation and Intrinsic Motivation but not Employee Voice. It may be explained that whereas employee voice is mentioned in the literature of organizational commitment as the outcome of organizational decision, it is insignificant in statistics because if the voice is mandated but not voluntary, in the long run, it will diminish employee's working enthusiasm and contribution and decrease job performance (Rees, Alfes, & Gatenby, 2013a). However, to those three main antecedent influencing organizational commitment, it is obvious that motivation plays an important role in encouraging employees to work much better for higher performance with a sense of achievement, and take more responsibility to their job (Jones & Lloyd, 2005; Latham & Pinder, 2005). Both intrinsic and extrinsic motivations really work well. Even though either of them has its own beneficial values, they are all linked to positive outcomes, higher productivity and even more organizational commitment. Employees tend to engage in their work and their organization (Gagne et al., 2010; Katzell & Thompson, 1990; Kuvass et al., 2017). Apparently, when employees feel engaged, they naturally have the perception of identification. In other words, they have their loyalty and shared

characteristics with their organization and its success or failure as well (Lee, 1970; Mael & Ashforth, 1992). Furthermore, they also feel proud of being a part of an organization and highly recommend the organization's values and achievement (Charles O'Reilly & Chatman, 1986).

## 4.4 The research of the impact of leadership, internal communication, internal motivation and external motivation on organizational commitment

#### 4.4.1 Organizational Commitment

As reviewed by Mowday et.al (1978), the concept of organizational commitment is defined as from the two main perspectives: behaviors and attitude. Moreover, it can be symbolized by at least there elements "1) a strong belief in arid acceptance of the organization's goals and values; 2) a willingness to exert considerable effort on behalf of the organization; and 3) a strong desire to maintain membership in the organization' (Mowday et al., 1978; Steers, 1977). Put it another way, from recent researches, according to Yousef et. al (2017), organizational commitment is originated from 3 distinct categories. The first type is affective commitment that relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017). Importantly, it is believed that employees feel more attachment to the organizational goals and values toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980).

#### 4.4.2. Leadership

Leadership is considered as the key factor in determining whether the organization succeeds (Men, 2014). The style of leading should be "simpatico" or "diversity-friendly". A diversity leader from CEO to the first line supervisor is considered as a corporate manager who leads subordinates in a fair, effective and respectful way. Nine characteristics that a diversity leader must possess are Sensitive, Impartial, Mediators, Patient, Amiable, Teachers, Involved, Communicators, and Optimistic (Hopkins & Hopkins, 1998). Also, in term of leadership, Simola (2012) recommends transformational leadership in which leaders aim to transform, motivate

and enhance their subordinates' actions and ethical aspirations. It contains four dimensions which are idealized influence, inspirational motivation, intellectual stimulation and individualized consideration (Judge & Bono, 2000; Simola et al., 2012). Furthermore, this type of leadership brings more benefits for leading present workgroups because today's followers turn more challenged and empowered. Followers are in the need of an inspirational leader to guide them in uncertainty and intellectually stimulate and encourage their abilities and talents (Bass & Riggio, 2006). Put it another way, Kirkpatrick (1991) emphasizes leader's traits which include achievement, motivation, ambition, energy, tenacity and initiative. Leaders should be provided essential skills such as formulating an organization vision, making effective plans for vision implementation in reality (Kirkpatrick & Locke, 1991).

From most previous studies about leadership, the type of charisma becomes emerging. Partly like ethical one, emotionality is the main dimension in charismatic leadership, the nature of which is not very rational. Problem-solving is not mostly based on authority but rather on personal characteristics (Marjosola & Takala, 2000). Leadership can't be fulfilled without groups who have the common goals. Surely, it is hard for leaders or managers effectively achieving organization's goals and that the leader can only archive goals through followers' efforts and actions (Andersen, 2006). Fry (2007) highly appreciates type of servant leadership which consists of four elements such as being a servant first, making sure that other people's needs are served; serving through listening; serving through people building and serving through leadership creation (Fry et al., 2007). Similarly, another type of leadership is transformational leadership by which leaders motivates followers by appealing to their higher-order needs and induce employees to transcend self-interest for the sake of the group or the organization (Men, 2014). For the emphasis, Wallis (2002) strengthens that followers are mainly influenced by leadership's inspiration in which values and beliefs are shared by both leaders and followers. Zhu (2004) believes in ethical leaders who behave morally and always tend to create a healthy environment and organizational culture to grow ethical behaviors inside the organization (Zhu et al., 2004). Therefore, the author states:

*Hypothesis 1: Leadership will positively affect organizational commitment.* 

Besides leadership, internal communication assists to transform information more specifically and effectively.

#### **4.4.3 Internal Communication**

Internal communication is an essential process by which people exchange information, create relationship and build organizational culture and values as well. It is somehow called employee communication (Deetz, 2001; Men, 2014). Moreover, Martic (2014) emphasizes "Through internal communication, executives "pilots" the organization, as well as assure and guide employees to follow the mission and goals, encourage loyalty, enhance employees to identify with the organization, increase their motivation and satisfaction with their work, develop mutual positive relationships between employees and the impact on the socialization of employees and organizational culture." (Martic, 2014). Above all, the best method for facilitating employees to gain specific goals is face-to-face communication (Okanovic et al., 2014), even though, several blocks in communication happen such as age, gender, previous history of organization, distrust in management, regional differences and so far (Smith & Mounter, 2008). If it is symmetrical, it has the positive effect on the relationship between employees and their organization which in turn leads to employee advocacy. Men (2014) also claims that there is a linkage among leadership, communication and employee outcomes which positively cultivates the quality of this relationship (Men, 2014; Men & Jiang, 2016). If communication is effective, it plays as an useful weapon for an organization (Ruck & Welch, 2012; M. Welch, 2011).

Furthermore, effective communication will foster the closer relationship between senior managers and employees (M. Welch, 2011). Especially, in the change process, along with commitment, social and cultural values, it plays a key role in which employees share information, build relationship and make things meaningful (Linke & Zerfass, 2011; Men & Stacks, 2014). From the same view point, Daly (2002) strengthens that internal communication is also a key issue with regard to how successful change management programs are performed (Daly, 2002). And therefore, this is the proposition of the relationship between international communication and organizational commitment.

Hypothesis 2: Internal communication will positively affect organizational commitment.

Besides that, motivation really works in sense of achievement, work engagement and positive outcomes.

#### 4.4.4 Intrinsic and Extrinsic Motivation

There have been some previous studies on motivation and its relationship with organizational commitment (Moon, 2000b). Motivation term is commonly defined as a sense of achievement, recognition for high performance, responsibility and individual development and considered as a psychological process of the exchange between individual and environment (Jones & Lloyd, 2005; Latham & Pinder, 2005). Two main drivers of motivation are intrinsic and extrinsic (Gagne et al., 2010; Kuvass et al., 2017; Moon, 2000b). Whereas the former relates to the state of interest and enjoy, the latter is about doing something for instrumental reasons (Gagne et al., 2010; Katzell & Thompson, 1990). In other words, while intrinsic motivation is linked to work engagement, positive outcomes, productivity, extrinsic one is built by visible incentives (Kuvass et al., 2017).

From another perspective known as Self-Determination theory, Garne (2015) reveals a multidimensional definition of motivation that consists of the two main forms: autonomous and controlled motivation. The author prefers autonomous, because while autonomous motivation is about individuals' optimal functioning such as well-being, performance etc., controlled one is less beneficial (Gagne et al., 2015).

However, above all, most researchers believe that the role of stimulating employees to raise their voice doesn't really relate to money and recognition. Those who have a sense of achievement or job importance are likely to have more commitment to an organization. That's the reason for most authors to confirm that intrinsic drivers dominate extrinsic rewards (Jones & Lloyd, 2005; Kuvass et al., 2017; Moon, 2000b; Tremblay et al., 2009). This leads to the following hypotheses:

Hypothesis 3: Internal motivation will positively affect Organizational commitment.

Hypothesis 4: External motivation will positively affect Organizational commitment.

#### 4.5 Method and Results

#### 4.5.1 Data Collection

The data for research is based on the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. All correspondents are subordinates with various titles from middle managers to staffs. The questionnaire was contained five constructs including organizational commitment, internal communication, leadership, intrinsic motivation and extrinsic motivation and distributed as hard copies that required handwritten responses. Five-point Likert scale is used to measure those factors with 29 items: totally disagree, disagree, neutral, agree, totally agree.

A total of 280 handouts of the questionnaire were delivered within six months in Ho Chi Minh City and other neighboring provinces in southern Vietnam. However, only 249 handouts were returned and valid. Quantitative research is conducted by non-probability sampling and obtained by using EFA, CFA analysis and Structural Equation Modeling.

#### 4.5.2 Data Analysis and Results

To ensure the items in the questionnaire to be valid and reliable, the questionnaire is surveyed by two hundred and forty nine participants. The descriptive statistics result shows that it ranges with mean from 3.41 to. 4.16 and its standard deviations fluctuate from 0.750 to 0.976. Moreover, Cronbach's Alpha ratio is 0.959 (>0.8) with 29 items. (see *Table 18*)

**Table 18 – Descriptive Statistics (OCG2)** 

|                                                                                                                               |     |         |         |      | Std.      |
|-------------------------------------------------------------------------------------------------------------------------------|-----|---------|---------|------|-----------|
|                                                                                                                               | N   | Minimum | Maximum | Mean | Deviation |
| IC01, This company encourages differences of opinions.                                                                        | 249 | 1       | 5       | 3.81 | .843      |
| IC02, Most communication between management and other employees in this organization can be said to be two-way communication. | 249 | 1       | 5       | 3.77 | .834      |
| IC03, Your leader makes you feel comfortable working with him/her.                                                            | 249 | 1       | 5       | 3.82 | .849      |
| IC04, You would feel comfortable working with your leader.                                                                    | 249 | 1       | 5       | 3.76 | .840      |

| OGC4, You really feel as if this organization's problems are your problems.                                        | 249 | 1 | 5 | 3.96 | .756 |
|--------------------------------------------------------------------------------------------------------------------|-----|---|---|------|------|
| OGC5, You feel a sense of pride working for this organization.                                                     | 249 | 1 | 5 | 3.85 | .804 |
| OGC6, In your work, you are willing to put in a great deal of effort beyond that normally expected.                | 249 | 1 | 5 | 3.82 | .778 |
| OGC7, The offer of a bit more money with another employer would not seriously make you think of changing your job. | 249 | 1 | 5 | 3.41 | .976 |
| Valid N (listwise)                                                                                                 | 249 |   |   |      |      |

| Reliability Statistics |                                        |            |  |  |  |
|------------------------|----------------------------------------|------------|--|--|--|
| Cronbach's             | Cronbach's Alpha Based on Standardized |            |  |  |  |
| Alpha                  | Items                                  | N of Items |  |  |  |
| .958                   | .959                                   | 28         |  |  |  |

EFA factor analysis is the next step. It is analyzed in two phases. Phase one is for independent variables, and phase two is for the dependent one.

In the first phase, four independent variables which are internal communication, leadership, intrinsic motivation and extrinsic motivation are included in EFA factor analysis with principal components method and rotation Varimax. Specifically, KMO equals to  $0.909~(\ge 0.5)$  and sig.  $0.001~(\le 0.05)$ , therefore Bartlett's Test is statistically significant. (*see Table 19*)

**Table 19 – KMO and Bartlett's Test (OCG2)** 

| Kaiser-Meyer-Olkin Measure of S | ampling Adequacy.  | .909     |
|---------------------------------|--------------------|----------|
| Bartlett's Test of Sphericity   | Approx. Chi-Square | 3790.690 |
|                                 | Df                 | 231      |
|                                 | Sig.               | .000     |

After Rotation method Varimax with Kaiser Normalization, 22 items of independent variables are separated into five factors, however, only four main factors are valid.

While component 1 contains nine items named Leadership: LDS1, LDS2, LDS3, LDS4, LDS5, LDS6, LDS7, LDS8, LDS9, component 2 involves four items called Intrinsic Motivation: IM01, IM02, IM03, IM04. Similarly, component 3 mainly includes four items grouped as Internal Communication: IC01, IC02, IC03, IC04. Last

but not least, Extrinsic Motivation is for component 4, mainly containing 4 items: EM01, EM02, EM03, EM04.

The evaluation of Cronbach's Alpha after EFA analysis rotated for 4 factors: Internal communication, Leadership, Intrinsic motivation and Extrinsic motivation are simultaneously at .926; .861; .890 and .811 with KMO equals to 0.917; 0.733; 0.790; and 0.718, respectively. They all are accepted. (see *Table 20*).

**Table 20 – EFA Resutl – Rotated Component Matrix (OCG2)** 

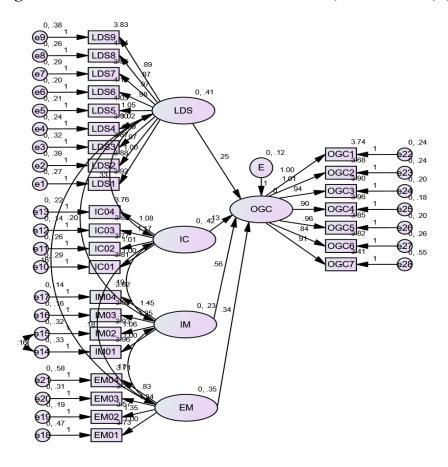
|                | Component |        |        |        |      |  |
|----------------|-----------|--------|--------|--------|------|--|
|                | 1         | 2      | 3      | 4      | 5    |  |
| IC01           |           |        | .549   |        |      |  |
| IC02           |           |        | .705   |        |      |  |
| IC03           |           |        | .790   |        |      |  |
| IC04           |           |        | .800   |        |      |  |
| LDS1           | .670      |        |        |        |      |  |
| LDS2           | .672      |        |        |        |      |  |
| LDS3           | .675      |        |        |        |      |  |
| LDS4           | .604      |        |        |        |      |  |
| LDS5           | .770      |        |        |        |      |  |
| LDS6           | .735      |        |        |        |      |  |
| LDS7           | .721      |        |        |        |      |  |
| LDS8           | .677      |        |        |        |      |  |
| LDS9           | .718      |        |        |        |      |  |
| LDS10          |           |        |        |        | .850 |  |
| IM01           |           | .747   |        |        |      |  |
| IM02           |           | .786   |        |        |      |  |
| IM03           |           | .759   |        |        |      |  |
| IM04           |           | .703   |        |        |      |  |
| EM01           |           |        |        | .622   |      |  |
| EM02           |           |        |        | .829   |      |  |
| EM03           |           |        |        | .888   |      |  |
| EM04           |           |        |        | .546   |      |  |
| Eigenvalue     | 5.835     | 2.821  | 3.011  | 2.564  |      |  |
| Cumulative     | 68.452    | 70.520 | 75.269 | 64.107 |      |  |
| Cronbach Alpha | .926      | .861   | .890   | .811   |      |  |

In the second phase, the dependent variable "organizational Commitment" is evaluated by EFA analysis. The result is that the evaluation of Cronbach's Alpha for dependent variable "Organizational Commitment" is .919 which is accepted.

Furthermore, KMO equals to  $0.887 (\ge 0.5)$  and sig.  $0.001 (\le 0.05)$  that also mean the Bartlett's Test is statistically significant and all factor loadings are more than 0.699. (see Table 21)

**Table 21 – KMO and Bartlett's Test (OCG2)** 

| Kaiser-Meyer-Olkin Measure    | of Sampling Adequacy. | .887     |
|-------------------------------|-----------------------|----------|
| Bartlett's Test of Sphericity | Approx. Chi-Square    | 1201.707 |
|                               | Df                    | 21       |
|                               | Sig.                  | .000     |


#### CFA Factor Analysis

P=.000; CFI = .872;

TLI = .857; GFI = .773;

RMSEA = .089

Figure 4 - Results of SEM of research model (standardized) (OCG2)



**Table 22 – Regression Weights (OCG2)** 

|     |   |     | Estimate | S.E. | C.R.  | P    | Label |
|-----|---|-----|----------|------|-------|------|-------|
| OGC | < | LDS | .250     | .092 | 2.733 | .006 |       |
| OGC | < | IC  | .131     | .088 | 1.479 | .139 |       |
| OGC | < | IM  | .562     | .109 | 5.133 | ***  |       |
| OGC | < | EM  | .344     | .072 | 4.774 | ***  |       |

|      |   |     | Estimate | S.E. | C.R.   | P   | Label |
|------|---|-----|----------|------|--------|-----|-------|
| LDS1 | < | LDS | 1.000    |      |        |     |       |
| LDS2 | < | LDS | .966     | .083 | 11.692 | *** |       |
| LDS3 | < | LDS | 1.095    | .082 | 13.301 | *** |       |
| LDS4 | < | LDS | 1.025    | .075 | 13.722 | *** |       |
| LDS5 | < | LDS | 1.046    | .074 | 14.213 | *** |       |
| LDS6 | < | LDS | .976     | .070 | 13.995 | *** |       |
| LDS7 | < | LDS | .974     | .076 | 12.746 | *** |       |
| LDS8 | < | LDS | .874     | .070 | 12.496 | *** |       |
| LDS9 | < | LDS | .888     | .079 | 11.214 | *** |       |
| IC01 | < | IC  | 1.000    |      |        |     |       |
| IC02 | < | IC  | 1.014    | .078 | 13.026 | *** |       |
| IC03 | < | IC  | 1.171    | .078 | 15.062 | *** |       |
| IC04 | < | IC  | 1.076    | .078 | 13.856 | *** |       |
| IM01 | < | IM  | 1.000    |      |        |     |       |
| IM02 | < | IM  | 1.062    | .083 | 12.735 | *** |       |
| IM03 | < | IM  | 1.350    | .125 | 10.831 | *** |       |
| IM04 | < | IM  | 1.450    | .131 | 11.041 | *** |       |
| EM01 | < | EM  | 1.000    |      |        |     |       |
| EM02 | < | EM  | 1.353    | .123 | 10.989 | *** |       |
| EM03 | < | EM  | 1.342    | .126 | 10.615 | *** |       |
| EM04 | < | EM  | .827     | .110 | 7.545  | *** |       |
| OGC1 | < | OGC | 1.000    |      |        |     |       |
| OGC2 | < | OGC | 1.009    | .066 | 15.176 | *** |       |
| OGC3 | < | OGC | .937     | .061 | 15.277 | *** |       |
| OGC4 | < | OGC | .900     | .058 | 15.432 | *** |       |
| OGC5 | < | OGC | .961     | .062 | 15.539 | *** |       |
| OGC6 | < | OGC | .836     | .063 | 13.339 | *** |       |
| OGC7 | < | OGC | .908     | .082 | 11.062 | *** |       |

The results of CFA factor analysis of the research model are presented in Figure 4. They are presented as follow: P=.000; CFI=.872; TLI=.857; GFI=.773; RMSEA=.089. According to the conditions with P<0.05; CFI,  $TLI \ge 0.8$ ; GFI is approximately 0.773 and RMSEA is approximately 0.08, they all meet the requirements. Considering the above conditions, the model is consistent with market data.

Based on the results in *Table 22*, the parameters (standardized) are statistically significant (p<0.05). Consequently, three factors LDS, IM, and EM have significant effects on Organizational commitment while IC with weight of .131 and P-value 0.139 less than 15%.

According to the regression weight between factors shown, while leadership positively affects organizational commitment with weight of .250, intrinsic motivation positively affects organizational commitment with weight of .562. Specifically, when leadership goes up by 1 standard deviation, organizational commitment goes up by 0.250 standard deviation and when intrinsic motivation goes up by 1 standard deviation, organizational commitment goes up by 0.562 standard deviation. Similarly, with weight of .344, extrinsic motivation has a positive effect on organizational commitment. (*see Table 22*)

#### 4.6 Concluding remarks

It is found that empirically, four antecedents mainly affecting organizational commitment are leadership, intrinsic motivation, extrinsic motivation and internal communication. It may be explained that whereas internal communication is mentioned in the literature of the antecedents of organizational commitment, it is significant in statistics, just less than 15%. The findings restates the role of leadership as the key factor in determining whether the organization succeeds (Men, 2014). To those three main antecedents that influence organizational commitment, it is obvious that motivation plays an important role in encouraging employees to work much better for higher performance with a sense of achievement, and take more responsibility to their job (Jones & Lloyd, 2005; Latham & Pinder, 2005). Both intrinsic and extrinsic motivations really work well. Even though either of them has its own beneficial values, they are all linked to positive outcomes, higher productivity and even more organizational commitment. Employees tend to engage in their work and their organization (Gagne et al., 2010; Katzell & Thompson, 1990; Kuvass et al., 2017). Apparently, when employees feel engaged, they naturally have the perception of identification. In other words, they have their loyalty and shared characteristics with their organization and its success or failure as well (Lee, 1970; Mael & Ashforth, 1992). Furthermore, they also feel proud of being a part of an organization and highly recommend the organization's values and achievement (Charles O'Reilly & Chatman, 1986).

The findings show that in study 01, the three main antecedents that positively affect organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification while the result of study 02 states that three main

antecedents that positively affect organizational commitment are leadership, intrinsic motivation and extrinsic motivation. Above all, these antecedents will help leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization.

These two studies' findings confirm that in Vietnamese context, the six main factors influencing organizational commitment are internal motivation, external motivation, organizational identification, perceived organizational support, leadership and internal communication. Prominently, leadership due to Vietnamese culture positively influences both meeting effectiveness and organizational commitment.

#### CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

#### **5.1** Conclusion

Due to the advent of the fourth industrial revolution in information and communication technologies and the significant change in business ecosystems, organizations and enterprises have to face with new challenges and intensive competition. How to manage a business effectively and successfully is the most important goal of all businesses on their way to expand and develop, including how to keep employees stay loyally with their organizations. For decades, most researchers have confirmed that highly committed employees may perform better than less committed ones. It is also believed that there is an integrated relationship among meeting effectiveness, leadership, job satisfactions with organizational commitment. In general, meetings are considered as the focal points for organizational members' essential activities. If a meeting is effective in facilitating organizations and employees to reach their goals, its benefits as an organizational tool is undeniable. Employees' goals and an organization's goals will lead to meeting effectiveness which is a timed process as well. It surely brings benefits to the entire organization. In addition, from the literature review of meeting effectiveness, it emphasizes the role of leadership. Leaders or meeting organizers play the very essential role. Whenever conflicts occur, leaders or meetings organizers will be those who make the final decision. They manage and control whatever activities during a discussion time. Most conflicts on work can be peacefully resolved through the meetings. If given-solutions aim to improve team effectiveness, they will bring positive experience and benefits to related-problem members. Thanks to meetings, subordinates feel satisfied with their job because during interactions, they have chances to exchange information, clarify ideas, build common ground and so forth. In fact, effective meetings will help subordinates devote more efforts and increase more commitment to their workplace. In other words, if subordinates feel satisfied with their jobs, they will express their strong desire to keep the membership with their organization.

Consequently, in order to survive, all enterprises are in the need of adapting and integrating with several adaptive drivers which are meeting effectiveness, leadership,

job satisfaction for more loyal and committed employees and organizational commitment.

Specifically, the current problem is that meetings in the workplace are said to be the poor and ineffective use of time. It is said that meetings are rarely necessary, longer than expected, lacking formal rules or structure (Belisle et al., 2022b). Moreover, many studies review that meetings are costly, unproductive and dissatisfying (Grosse & Femenias, 2022).

Having the same view point, several authors point out that if the meetings are effective in facilitating organizations and employees to reach their goals, their benefits as an organizational tool is obvious (Rogelberg et. al., 2006). Based on the meeting's quality, employees may evaluate workplace meeting as positive interruptions, otherwise, meetings may be considered as negative interruptions that waste valuable time (Allen et. al., 2020). Thus, meeting effectiveness partly plays an essential role in strengthening commitment.

Apparently, thanks to satisfaction, strong commitment will brings the company high employees productivity, reduced absenteeism, excellent team players and strong advocates. Committed employees are willing to dedicate for their organization because they believe in the organization, its goals, vision, missions and leadership team. Organizations surely get higher performance of organizational members and easily achieve goal attainment. That's why thousands of empirical studies of organizational commitment, job satisfaction and meeting effectiveness have been conducted. However, until now, there hasn't had any research showing the relationship between meeting effectiveness, leadership, internal communication, organizational commitment and the mediating role of job satisfaction on these relationships.

Consequently, the dissertation is conducted for exploring the five main constructs: meeting effectiveness, leadership, internal communication, job satisfaction and organizational Commitment.

Firstly, the author aims to find out what antecedents affecting meeting effectiveness. Specifically, the author expects to investigate how voice, leadership power and other factors such as internal communication, agenda that affect meeting effectiveness. The results reveal three antecedents affecting meeting effectiveness:

leadership, agenda and internal communication. Clearly, leaders play the vital role in formulating an organization vision, making effective plans for vision implementation in reality as well as creating a healthy environment and organizational culture to grow ethical behaviors inside the organization. From the meeting literature perspective, the role of meeting leader is vital. Especially, in a highly diverse workforce, leadership becomes too complicated and needs to be skillful. It is considered as the key factor in determining whether the organization succeeds. Leaders should lead subordinates in a fair, effective and respectful way. Most previous studies confirm that subordinates surely become more committed to the organization when they are working with inspirational leaders who willingly instruct them in uncertainty and encourage their abilities and talents. In addition, it is obvious that during the process of interaction, conflicts may exist and therefore how to resolve conflicts needs to be concerned. At any circumstances, most authors from previous studies believe that when conflicts occur in the meeting, if they are resolved in a constructive way, they will surely bring more benefits for the organizations. Importantly, meeting effectiveness, more or less, become crucial in Vietnamese organizations because Vietnamese people belong to high-context culture. They are tend to nonverbal, indirect, implicit and collectivistic. In most meetings, subordinates rarely or never raise their ideas, even though they disagree with ideas from their superiors. They seems to be obedient and passive. During the meetings, some subordinates suggest solutions and receive an approval from their boss but it still doesn't work because a boss does promise but doesn't keep it. Moreover, Vietnamese superiors are referred to be so conservative and high-power distance. Vietnamese organizations have poor quality, leading to diminish staff's job enthusiasm and in turn weakening the organizational commitment. Effective and efficient meetings will motivate subordinates make more contributions and increase commitment to their workplace. Thus, what makes meetings more effective needs to be conducted.

Next, the author investigate the relationships among four factors: leadership, meeting effectiveness, job satisfaction and organizational commitment. The author designs a survey based on the four research questions: How to make meetings more effective? How does leadership affecting organizational commitment? How does meeting effectiveness affecting organizational commitment? What will mediate the

influence between meeting effectiveness and organizational commitment? This study contributes to the literature by investigating the relationship among four factors: leadership, meeting effectiveness, job satisfaction and organizational commitment. Its findings show that job satisfaction has a positive influence on organizational commitment and confirm that job satisfaction mediates the relationship between meeting effectiveness and organizational commitment. To some extent, it is explained that whenever subordinates feel satisfied with their job through meetings, they will more commit to their organizations.

After that, two approaches have been conducted to confirm the antecedents that strongly affect organizational commitment. While the first is about the research of the impact of internal motivation, external motivation, employee voice, organizational identification and perceived organizational commitment on organizational commitment, the second is about the research of the impact of leadership, internal motivation, external motivation and internal communication on organizational commitment.

It is found that six antecedents mainly affecting organizational commitment are internal motivation, external motivation, organizational identification, perceived organizational commitment, internal communication and leadership. Evidently, motivation is commonly known as a sense of achievement, recognition for high performance, responsibility and individual development and also considered as a psychological process of the exchange between individual and environment. While intrinsic motivation relates to the state of interest and enjoy or work engagement, positive outcomes, productivity and so forth, the latter is about doing something for instrumental reasons or visible incentives. In addition, whenever people have trusts and beliefs in their organization, they definitely own the perception of oneness or belongingness with an organization where he or she tightly involves in and shares with its successes and failures.

The survey is investigated in the context of Vietnamese organizations with 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business.

The contributions of the dissertation are initially to build the body of literature in the field of meeting effectiveness, job satisfaction and organizational commitment from theoretical perspective. Thanks to the result of studying meeting effectiveness, it believes that job satisfaction positively linked to meeting effectiveness. Besides that, two more prominent contributions of the dissertation are to explore the impact of the mediating role of job satisfaction on the causal effect of meeting effectiveness on organizational commitment and confirm the vital role of leadership on organizational commitment.

Next, from the empirical aspect, it emphasizes that the role of meetings and job satisfaction become more important and need to be taken into account for every organization if it expects to gain more committed subordinates.

Finally, from the perspective of management, the top managers or leaders may apply these suggested models from the findings such as a model of determinants to gain more effective meetings in the context of Vietnamese organization; a model of antecedents strengthening organizational commitment; factors affecting organizational commitment; building organizational commitment: the analysis of indicators and the impact of job satisfaction as a mediator of the effects of meeting effectiveness on organizational commitment for better organizational outcomes in both public and private sector.

In short, there are some suggestions for practice. Obviously, meeting organizers or leaders should strengthen the quality of assemblies more effectively and efficiently by improving their leadership styles and ensuring a fair fit with their organizational culture. This strategy would facilitate an inspire engagement between subordinates and organizations. Next, job satisfaction needs to be accorded priority. Most problems or conflicts occurring during work exchanges should be comprehensively and sufficiently resolved, especially in face-to-face meetings. Whenever subordinates feel satisfied with their jobs, they express a strong desire to maintain membership in and commitment to their organizations. Above all, for the perspective of human resource management, when recruiting and developing personnel, leadership teams should be carefully considered and designated as they will be the ones in charge of employee development and closely direct their subordinates in every act and strategy that they implement at

work. Furthermore, the findings can be used by managers and organizational analysts as reference in seeking ways to increase employee retention, performance, and commitment.

The dissertation's vital purpose is to help leaders making strategic plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization with the optimal purpose of achieving better profitable benefits, based on these internal resources.

From the perspective of contributions, in theory, the author has contributed in the literature review about the concepts of meeting effectiveness, job satisfaction, leadership and organizational commitment in Vietnamese context.

For the sake of the management, the empirical findings show that as from the previous findings even though meetings seem to be time and effort wasters, meeting effectiveness brings a lot of benefits for organizational members. It is particularly related to goal attainment and decision satisfaction. They need be considered and improved in an effective and efficient way so that subordinates make more contributions and increase commitment to their workplace. Furthermore, it is evident that meeting effectiveness is significantly influenced by the two dominant factors consisting of leadership and substantive conflict. Meeting leaders' guides decide whether the meetings are effective or not. Leadership plays a very important role in transforming, motivating and enhancing subordinates' actions and ethical aspirations. Moreover, during the process of interaction, conflicts may exist and therefore, how to resolve conflicts needs to be concerned. That's why empirically the results reveal two antecedents affecting meeting effectiveness including Leadership and Substantive conflict are undeniable.

Moreover, the findings also shed light on the practical meaning of organizational commitment in the context of Vietnamese organizations. Leadership and job satisfaction are related because to increase job satisfaction among subordinates, leaders should thoroughly resolve every conflict or problem in meetings. This approach is responsible for the significant influence of meeting effectiveness on job satisfaction. Whether meetings are effective or not rests primarily on the performance of leaders or meeting organizers; that is, leadership positively affects meetings. Previous studies

confirmed that highly committed employees may perform better than less committed ones. If employees are gratified with their work, they become more committed to their organizations. In addition, the author takes into account the stereotypes of these four concepts in Vietnamese context.

The dissertation has been conducted in the careful and thoughtful process.

Specifically, the dissertation is *initially* to build the body of literature in the field of meeting effectiveness, leadership, job satisfaction and organizational commitment from theoretical perspective. The four main studies have been conducted consisting of determinants to gain more effective meetings in the context of Vietnamese organizations; a model of antecedents strengthening organizational commitment; factors affecting organizational commitment and critical factors for organizational commitment: an empirical study in Vietnam. Thanks to the result of studying meeting effectiveness, it recognizes that job satisfaction positively linked to meeting effectiveness. Besides that, two more prominent contributions of the dissertation are to explore the impact of the mediating role of job satisfaction on the causal effect of meeting effectiveness on organizational commitment and confirm the vital role of leadership on organizational commitment.

*Next*, from the empirical aspect, due to the vital role of cultures, especially in Vietnamese culture, Vietnamese people tend to work in harmony, have in-group thinking style and be acquainted with obeying superiors' orders without questions or debates. Therefore, it is obvious that the role of meetings, leadership and job satisfaction become more important and need to be taken into account for every organization if it expects to gain more committed subordinates.

Finally, from the perspective of management, the top managers or leaders may apply these suggested models from the findings such as a model of determinants to gain more effective meetings in the context of Vietnamese organization; a model of antecedents strengthening organizational commitment; factors affecting organizational commitment; building organizational commitment: the analysis of indicators and the impact of job satisfaction as a mediator of the effects of meeting effectiveness on

organizational commitment for better organizational outcomes in both public and private sector.

In short, there are some suggestions for practice. Obviously, meeting organizers or leaders should strengthen the quality of assemblies more effectively and efficiently by improving their leadership styles and ensuring a fair fit with their organizational culture. This strategy would facilitate an inspire engagement between subordinates and organizations. Next, job satisfaction needs to be accorded priority. Most problems or conflicts occurring during work exchanges should be comprehensively and sufficiently resolved, especially in face-to-face meetings. Whenever subordinates feel satisfied with their jobs, they express a strong desire to maintain membership in and commitment to their organizations. Above all, for the perspective of human resource management, when recruiting and developing personnel, leadership teams should be carefully considered and designated as they will be the ones in charge of employee development and closely direct their subordinates in every act and strategy that they implement at work. Furthermore, the findings can be used by managers and organizational analysts as reference in seeking ways to increase employee retention, performance, and commitment.

The dissertation's vital purpose is to help policy makers making strategic plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and get more commitment to their organization with the optimal purpose of achieving better profitable benefits, based on these internal resources.

#### **5.2 Recommendations**

Firstly, based on the literature of meeting effectiveness, it also has the great impact on organizational commitment. What should do next is to find out more antecedents for the relationship between meeting effectiveness and organizational commitment which motivates and inspires subordinates to engage more closely in their organization.

Secondly, on the basic of the literature on organizational commitment, numerous factors other than just those ones addressed in the current study exert tremendous effects on organizational commitment. The findings just emphasize the four main factors including leadership, job satisfaction, internal communication and meeting effectiveness. Therefore, we should find out more factors affecting organizational commitment.

Last but not least, due mainly to the benefits of organizational commitment for both employees and employers in order to facilitate employees to more engage in their job and organization, what should explore next are:

- To investigate more indicators to make meeting more effective, taking advantage of internet of things (IoT);
- To find out other factors interfering the effect of meeting effectiveness on organizational commitment which motivate and inspire subordinates to engage more closely in their organization, besides job satisfaction;
- To explore more antecedents contributing to the meeting effectiveness and factors influencing organizational commitment in the age of 4.0 industry.

#### 5.3 Limitations

Data sample should be extended into more sectors and more than 34 enterprises. It should be distinguished into two types of participants in which one group is from the private form and the other is from the state or public one. This topic can be extended to study the role of the latter.

Besides, the Vietnamese culture is closely linked to the Confucian culture, therefore, the author should conduct more research of how it influences the way people work and communicate and how to change and improve for the better.

#### REFERENCES

- Alavi, M., Kayworth, T. R., & Leidner, D. E. (2005-6). An Empirical Examination of the Influence of Organizational Culture on Knowledge Management Practices. *Journal of Management Information Systems / Winter*, 22(3), 191–224.
- Albert, S., Ashforth, B. E., & Dutton, J. E. (2000). Organizational identity and identification: Charting new waters and building new brigdes. *Academy of Management Journal*, 25(1), 13-17.
- Allen, J. A. (2012). Employees' feelings about more meetings. *Management Research Review*, *35*(5).
- Allen, J. A., Tong, J., & Landowski, N. (2020). Meeting effectiveness and tas performance: meeting size matters. *Journal of Management Development*. doi:DOI 10.1108/JMD-12-2019-0510
- Allen, J. A., Willenbrock, N. L., & Landowski, N. (2014). Linking pre-meeting communication to meeting effectiveness. *Journal of Managerial Psychology*, 29, 1064-1081.
- Alonderiene, R., & Majauskaite, M. (2016). Leadership style and job satisfaction in higher education institutions *International Journal of Educational Management*, 30(1), 140-164
- Alshurideh, M. T., Kurdi, B. A., & Alhamad, A. Q. (2022). Impact of Transformational Leadership on the Job Satisfaction with the Moderating Role of Organizational Commitment: Case of UAE and Jordan Manufacturing Companies. *Academy of Strategic Management*, 21(2).
- Andersen, J. A. (2006). Leadership, personality and effectiveness *The Journal of Socio-Economics*, 35.
- Ashforth, B. E., Harrison, S. H., & Corley, K. G. (2008). Identification in Organizations: An Examination of Four Fundamental Questions. *Journal of Management*, 34(3). doi:10.1177/0149206308316059
- Aziri, B. (2011). Job satisfaction: A literature review. *Management Research and Practice*, 3(4), 77-86.
- Bagire, V., Byarugaba, J., & Kyogabiirwe, J. (2015). Organizational meetings: management and benefits *Journal of Management Development*, 34(8), 960 972.
- Baker, H. (2010). Writing Meeting Minutes and Agenda. Lancashire, UK: Universe of Learning Ltd.
- Bass, B. M., & Riggio, R. E. (2006). *Transformational Leadership*. London: Lawrence Erlbaum Associates, Inc.
- Belisle, L., Paquet, M., & Lafranchise, N. (2022a). A tool for reducing the time loss and dissatifaction associted with meetings: Validation of the staff meeting effectiveness questionnaire. *Communication Research and Practive*, 8(1), 70-85.
- Belisle, L., Paquet, M., & Lafranchise, N. (2022b). A tool for reducing the time loss and dissatisfaction associated with meetings: Validation of the staff meeting effectiveness questionnaire. *Communication Research and Practive*. doi:10.1080/22041451.2021.20211693
- Berrel, M., Wright, P., & Hoa, T. T. V. (1999). The Influence of Culture on Managerial Behavior. *Journal of Management Development*, 18(7), 578-589.
- Buchanan, B. (1974). Building Organizational Commitment: The Socialization of Managers in Work Organizations *Administrative Science Quarterly*, *4*, 533-546.

- Burnfield, J. L., Steven, G., Rogelberg, S. G., Leach, D. J., & Warr, P. B. (2006). "Not Another Meeting!" Are Meeting Time Demands Related to Employee Well-Being? *Journal of Applied Psychology*, 91(1), 86–96
- Butt, D. (2006). Agenda based meeting management system, interface and method. *Google Patents*.
- Caesens, G., Marique, G., Hanin, D., & Stinglhamber, F. (2015). The relationship between perceived organizational support and proactive behaviour directed towards the organization. *European Journal of Work and Organizational Psychology*.
- Charles O'Reilly, C., & Chatman, J. (1986). Organizational Commitment and Psychological Attachment: The Effects of Compliance, Identification, and Internalization on Prosocial Behavior. *Journal of Applied Psychology*, 71(3), 492-499.
- Cook, J., & Wall, T. (1980). New work attitude measures of trust, organizational commitment and personal need non-fulfilment. *Journal of Occupational Psychology*, *53*, 39-52.
- Cosier, R. A., Dalton, D. R., & Taylor, L. A. (1991). Positive effects of cognitive conflict and employee voice. *Employee Responsibilities and Rights Journal*, 4(1).
- Cox, A., Hannif, Z., & Rowley, C. (2013). Leadership styles and generational effects: examples of US companies in Vietnam. *International Journal of Human Resource Management*.
- Daly, P. J. K. F. (2002). Internal communication during change management. *Corporate Communications: An international Journal*, 17, 46-53.
- De Dreu, C. K. W., & Beersma, B. (2005). Conflict in organizations: Beyond effectiveness and performance. *Psychology Press*, *14*(2), 105-117.
- Deetz, S. (2001). Conceptual foundations In *The new handbook of organizational communication: Advances in theory, research and methods* (pp. 3-46): Thousand Oaks, CA: Sage.
- Dessler, G. (1999). How to earn your employees' commitment. *Academy of Management Executive*, 13(2).
- Detert, J. R., & Burris, E. R. (2007). Leadership behavior and employee voice-Is the door really open. *Academy of Management Journal*, 50(4), 869–884.
- Dunsing, R. J. (1977). You and I have simply got to stop meeting this way. New York: Amazon. Edwards, M. R. (2005). Organizational identification: A conceptual and operational review. *International Journal of Management Reviews*, 7(4), 207–230
- Eisenberger, R., Fasolo, P., & LaMastro, V. D. (1990). Perceived Organizational Support and Employee Diligence, Commitment, and Innovation *Journal of Applied Psychology*, 75(1), 51-59.
- Eisenberger, R., & Huntington, R. (1986). Perceived Organizational Support. *Journal of Applied Psychology*, 51(3).
- Eisenberger, R., Stinglhamber, F., Vandenberghe, C., Sucharski, I. L., & Rhoades, L. (2002). Perceived Supervisor Support: Contributions to Perceived Organizational Support and Employee Retention. *Journal of Applied Psychology*, 87(3), 565-573.
- Eliyana, A., & Maarif, S. (2019). Job Satisfaction and organizational commitment effect in transformational leadership towards employee performance *European Research on Management and Business Economics*, 25, 144-150.
- Esquivel, M. A., & Kleiner, B. H. (1996). The importance of conflict in work team effectiveness *Team Performance Management: An International Journal*, 2 (3), 42 48.
- Farndale, E., Rruiten, J. V., clare Kelliher, C., & Hailey, V. H. (2011). The inflluence of perceived employee voice on organizational commitment, an exchange perspective. *Human Resource Management*, 50(1), 113 129.

- Fry, L. W., Matherly, L. L., Whittington, J. L., & Winston, B. E. (2007). Spiritual Leadership as an Integrating Paradigm for Servant Leadership. *In Integrating Spirituality and Organizational Leadership*.
- Gaertner, S., & Robinson, J. M. (2000). Structural determinants of job satisfaction and organizational commitment in turnover models. *Human Resource Management Review*, 9(4), 479-493.
- Gagne, M., Forest, J., M.H., M.-H. G., & Aube, C. (2010). The Motivation at Work Scale: Validation Evidence in Two Languages. *Educational and Psychological Measurement*, 70(4), 628–646
- Gagne, M., Forest, J., & Vansteenkiste, M. (2015). The Multidimensional Work Motivation Scale: Validation evidence in seven languages and nine countries. *European Journal of Work and Organizational Psychology*, 24(2), 178–196.
- Gautam, T., Dick, R. V., & Wagner, U. (2004a). Organizational identification and organizational commitment: Distinct aspects of two related concepts. *Asian Journal of Social Psychology*, 7, 301–315.
- Gautam, T., Dick, R. V., & Wagner, U. (2004b). Organizational identification and organizational commitment: Distinct aspects of two related concepts. *Asian Journal of Social Psychology*, 7, 301-315.
- Grosse, E., & Femenias, P. (2022). Meeting Design Supporting Sustainability in Early Planing Practice: A Combination of "Hard and Soft" Characteristics. *Sustainability*, 14. doi:10.3390/su63159
- Guetzkow, H., & Gyr, J. (2015). An analysis of conflict in decision-making groups. *Field Observation of Business and Government Conferences*, 9.
- Hofstede, G. (2021). Retrieved from <a href="https://www.hofstede-insights.com/country/vietnam/">https://www.hofstede-insights.com/country/vietnam/</a>
- Hopkins, W. E., & Hopkins, S. A. (1998). Diversity Leadership: A mandate for the 21st Century Workforce. *The Journal of Leadership Studies*, *5*(3).
- Inglis, S., & Weaver, L. (2000). Designing Agendas to Reflect Board Roles and Responsibilities *Nonprofit Management & Leadership*, 11(1).
- Jaiswal, D., & Dhar, R. L. (2016). Impact of perceived organizational support, psychological empowerment and leader member exchange on commitment and its subsequent impact on service quality *International Journal of Productivity and Performance Management*, 65(1), 58-79.
- Jarzabkowski, P., & Seidl, D. (2008). The Role of Meetings in the Social Practice of Strategy. *Organization Studies*, 29(11), 1391-1426.
- Jones, N. B., & Lloyd, G. C. (2005). Does Herzberg's motivation theory have staying power? . Journal of Management Development, 24(10), 929-943
- Judge, T. A., & Bono, J. E. (2000). Five-Factor Model of Personality and Transformational Leadership. *Journal of Applied Psychology*, 85(5), 751-765.
- Katzell, R. A., & Thompson, D. E. (1990). Work motivation theory and practice. *American Psychologist*, 45(2), 144-153.
- Kim, K. Y., Eisenberger, R., & Baik, K. (2016). Perceived organizational support and affective organizational commitment: Moderating influence of perceived organizational competence. *Journal of Organizational Behavior*, 37, 558–583. doi:10.1002/job.2081
- Kirkpatrick, S. A., & Locke, E. A. (1991). Leadership: Do traits matters? *Academy of Management Executive*, 5(2).
- Knippenberg, D. V., & Sleebos, A. E. (2006). Organizational identification versus organizational commitment: Self-definition, social exchange, and job attitudes. *Journal of Organizational Behavior*, 27(571-584
- ). doi:10.1002/job.359

- Kohl, K. S. (2007). Americans doing business in Vietnam: Communication differences.
- Kreiner, G. E., & Ashforth, B. E. (2004). Evidence toward an expanded model of organizational identification. *Journal of Organizational Behavior*, 25, 1–27. doi:10.1002/job.234
- Kuvass, B., Buch, R., Weibel, A., Dysvik, A., & Nerstad, C. G. L. (2017). Do intrinsic and extrinsic motivation relate differently to employee outcomes? *Journal of Economic Psychology*, 61, 244-258.
- Latham, G. P., & Pinder, C. C. (2005). Work motivation theory and research at the dawn of the twenty-first century. *Annual Review of Psychology*, *56*, 485–516.
- Leach, D. J., Rogelberg, S. G., Warr, P. B., & Burnfield, S. G. (2009). Perceived meeting effectivenss: The role of Design characteristics. *Journal of Business and Psychology*, 24, 65-76. doi:DOI 10.1007/s10869-009-9092-6
- Lee, S. M. (1970). An Empirical Analysis of Organizational Identification. *Academy of Management Journal*.
- Linke, A., & Zerfass, A. (2011). Internal communication and innovation culture: developing a change framework *Journal of Communication Management*, 15(4), 332-348.
- Linn Van Dyne, L. V., Ang, S., & Botero, I. C. (2003). Conceptualizing employee silence and employee voice as multitimensional constructs. *Journal of Management Studies*, 40(6).
- Locker, K., & Keinzler, D. (2009). Business and Administrative Communication (9th ed.): Mc Graw
- Mael, F., & Ashforth, B. E. (1992). Alumni and their alma mater: A partial test of the reformulated model of organizational identification *Journal of Organizational Behavior*, 13, 103-123
- Marjosola, I. A., & Takala, T. (2000). Charismatic leadership, manipulation and the complexity of organizational life. *Journal of Workplace Learning*.
- Martic, M. (2014). *Communication between employees*. Paper presented at the Symorg 2014, Serbira.
- Mazzei, A. (2010). Promoting active communication behaviours through internal communication *International Journal*, 15(3), 221-234
- Meinecke, A. L., & Lehmann-Willenbrock, N. K. (2015). Social dynamics at work: Meetings as a gateway.
- Men, L. R. (2014). Strategic Internal Communication: Transformational Leadership, Communication Channels, and Employee Satisfaction. *Management Communication Quarterly*, 28(2), 264–284
- Men, L. R. (2014). Why Leadership Matters to Internal Communication: Linking Transformational Leadership, Symmetrical Communication, and Employee Outcomes. *Journal of Public Relations Research*, 26, 256–279.
- Men, L. R., & Jiang, H. (2016). Cultivating Quality Employee-Organization Relationship. *International journal of strategic communication*, 10(5), 462–479
- Men, L. R., & Stacks, D. (2014). The Effects of Authentic Leadership on Strategic Internal Communication and Employee-Organization Relationships *Journal of Public Relations Research*, 26, 301-324.
- Mishra, K., Lois Boynton, L., & Mishra, A. (2014). Driving Employee Engagement: The Expanded Role of Internal Communications. *International Journal of Business Communication* 2, 51(2), 183–202
- Moon, M. J. (2000a). Organizational Commitment Revisited in New Public Management: Motivation, Organizational Culture, Sector, and Managerial Level *Public Performance & Management Review*, 24(2), 177-194.

- Moon, M. J. (2000b). Organizational Commitment Revisited in New Public Management: Motivation, Organizational Culture, Sector, and Managerial Level *Public Performance & Management Review*, 24(2), 177-194
- Morrison, E. W. (2014). Employee Voice and Silence. *The Annual Review of Organizational Psychology and Organizational Behavior*, *1*, 173-197.
- Mowday, R. T., Steers, R. M., & Porter, L. W. (1978). The measurement of Organizational Commitment: A progress report. *Technical report*.
- Nguyen, M., & Truong, M. (2016). The Effect of Culture on Enterprise's Perception of Corporate Social Responsibility: The Case of Vietnam. *ScienceDirect*, 40, 680-686.
- Nicholas, C. R., & Jay, F. N. (2001). Meeting Analysis: Findings from Research and Practice.
- Nixon, C. T., & Littlepage, G. E. (1992). Impact of meeting procedures on meeting effectiveness. *Human Science Press, Inc, 6*(3).
- Nixon, C. T., & Littlepage, G. L. (2014). Impact of meeting procedures on meeting effectiveness. *Journal of Business and Psychology*, 6, 361-369.
- Okanovic, M., Stefanovic, T., & Suznjevic, M. (2014). *New Media in Internal Communication*. Paper presented at the Symorg 2014, Serbira.
- Pratama, E. N., Suwarni, E., & Handayani, M. A. (2022). The Effect Of Job Satisfaction And Organizational Commitment On Turnover Intention With Person Organizaton Fit As Moderator Variable. *ATM*, 6(1).
- Putnam, L. L. (1988). Communication and Interpersonal Conflict in Organizations Management Communication Quarterly, 1, 293. doi:10.1177/0893318988001003002
- Rees, C., Alfes, K., & Gatenby, M. (2013a). Employee voice and engagement: connections and consequences. *The International Journal of Human Resource Management*, 14, 2780–2798.
- Rees, C., Alfes, K., & Gatenby, M. (2013b). Employee voice and engagement: connections and consequences. *The International Journal of Human Resource Management*, 24(14), 2780–2798, .
- Reichers, A. E. (1985). A Review and Reconceptualization of Organizational Commitment *The Academy of Management Review*, 10(3), 465-476.
- Renton, M. (1980). *Getting better results from the meetings you run.* : Champaign, IL: Research Press.
- Rhoades, L., & Eisenberger, R. (2002). Perceived Organizational Support: A Review of the Literature. *Journal of Applied Psychology*, 87(4), 698-714.
- Rogelberg, S. G., Leach, D. J., Warr, P. B., & Burnfield, J. L. (2006). "Not Another Meeting!" Are Meeting Time Demands Related to Employee Well-Being? *Journal of Applied Psychology*, 91(1), 86-96.
- Ruck, K., & Welch, M. (2012). Valuing internal communication; management and employee perspectives. *Public Relation Review* 38(2012), 38, 223-230.
- Safriadi, Hamdat, S., Lampe, M., & Munizu, M. (2006). Organizational Culture In Perspective Anthropology *International Journal of Scientific and Research*, 6.
- Shore, L. M., & Wayne, S. J. (1993). Commitment and Employee Behavior: Comparison of Affective Commitment and Continuance Commitment With Perceived Organizational Support. *Journal of Applied Psychology*, 78(5), 774-780.
- Simola, S., Barling, J., & Turner, N. (2012). Transformational leadership and Leader's Mode of Care Reasoning *Journal of Business Ethics*, 229-237. doi:DOI 10.1007/s10551-011-1080-x
- Smith, L., & Mounter, P. (2008). *Effective Internal Communication*. USA: Replika Press Pvt Ltd.

- Steers, R. M. (1977). Antecedents and Outcomes of Organizational Commitment *Administrative Science Quarterly*, 22(1), 46-56
- Swierczek, F. W., & Ha, T. T. (2003). Entrepreneural orientation, uncertainty avoidance and firm performance. *International Journal of Entreprenership and Innovation*.
- Tony, D., Adrian, W., Mick, M., & Peter, A. (2004). The meanings and purpose of employee voice. *International Journal of Human Resource Management*, 15(6), 1150-1171.
- Tremblay, M. A., Blanchard, C. M., Taylor, S., Pelletier, L. G., & Villeneuve, M. (2009). Work Extrinsic and Intrinsic Motivation Scale: Its Value for Organizational Psychology Research. *Canadian Journal of Behavioural Science*, 4, 213–226. doi:10.1037/a0015167
- Valaei, N., & Rezaei, S. (2016). Job satisfaction and organizational commitment. *Management Research Review*, 39(12), 1663-1694.
- Vercic, A. T., Vercic, D., & Sriramesh, K. (2012). Internal Communication: Definition, parameters, and the future. *Public Relations Review*, *38*, 223-230.
- Volkema, R. J., & Fred Niederman, F. (1996). Planning and Managing Organizational Meetings: An Empirical Analysis of Written and Oral Communications *The journal of Business Communication*, 33, 275-296.
- Wall, J. J. A., & Callister, R. R. (1995). Conflict and its management. *Journal of Management Development*, 21(3), 515-558
- Wallis, J. (2002). Drawing on revisionist economics to explain the inspirational dimension of leadership. *Journal of Socio-Economics*, 31, 59-74.
- Welch, D. D. (2008). Conflicting Agendas. Eugene, Oregon: Published by The Pilgrim Press.
- Welch, M. (2011). Appropriateness and acceptability: Employee perspectives of internal communication. *Public Relation Review*, 38.
- Welch, M., & Jackson, P. R. (2007). Rethining internal communication: a stakeholder approach. *Corporate Communications: An international Journal*, 177.
- Yousef, D. A. (2017). Organizational Commitment, Job Satisfaction and Attitudes toward Organizational Change: A Study in the Local Government *International Journal of Public Administration*, 40(1), 77-88.
- Zhu, W., May, D. R., & Avolio, B. J. (2004). The Impact of Ethical Leadership Behavior on Employee Outcomes: The Roles of Psychological empowerment and Authencity. *Journal of Leadership and Organizational Studies*.

#### LIST OF APPENDICES

Appendix 1 – List of Publications

Appendix 2 - Determinants to gain more effective meetings in the context of vietnamese organization

Appendix 3 - Critical factors for organizational commitment: An empirical study in Vietnam

Appendix 4 - Building organizational commitment: the analysis of indicators

Appendix 5 - Factors affecting organizational commitmen

Appendix 6 - Questionnaires

#### **APPENDICES**

#### **APPENDIX 1: LIST OF PUBLICATIONS**

- 1. Thanh, L. D., Thong, B. Q., Chon, L.V., & Nguyen, N. T. (2020). Determinants to Gain More Effective Meetings in the Context of Vietnamese Organizations. *International Journal of Analysis and Applications*, 18(3), 461-481.
- 2. Thanh, L. D., Nguyen, N. T., Chon, L.V., & Thong, B. Q. (2020). BUILDING ORGANIZATIONAL COMMITMENT: THE ANALYSIS OF INDICATORS. *Academy of Strategic Management Journal*, 19(6), 1-9.
- 3. Ly, D., Bui, Q., Le, V., & Nguyen, N. (2021). A model of antecedents strengthening organizational commitment. *Management Science Letters*, 11(4), 1287-1294.
- 4. Thanh, L.D. (2020). Factors affecting organizational commitment. The first international conference on science, economics and society studies UEF 2020, Ho Chi Minh City University of Economics and Finance, Finance Publishing House.
- 5. Thanh, L. D., Chon, L.V., Thong, B. Q., & Nguyen, N. T. (2021). Critical factors for organizational commitment: An empirical study in Vietnam. *Journal of Asian Finance, Economics and Business*, 8(5).

International Journal of Analysis and Applications

Volume 18, Number 3 (2020), 461-481

URL: https://doi.org/10.28924/2291-8639

DOI: 10.28924/2291-8639-18-2020-461



### DETERMINANTS TO GAIN MORE EFFECTIVE MEETINGS IN THE CONTEXT OF VIETNAMESE ORGANIZATIONS

#### LY DAN THANH<sup>1,2</sup>, LE VAN CHON<sup>1,2</sup>, BUI QUANG THONG<sup>1,2</sup>, NHU-TY NGUYEN<sup>1,2,\*</sup>

<sup>1</sup>School of Business, International University (IU), Vietnam <sup>2</sup>Vietnam National University, HCM City, Vietnam

\*Corresponding author: nhutynguyen@hcmiu.edu.vn; nhutynguyen@gmail.com

ABSTRACT. Meetings are the primary communicative practice in every organization in order to fulfill the vital consensus, make changes and exchange ideas. Much time and effort are devoted to meetings aiming at information sharing, decision making, and problem solving. Therefore, finding out how voice and leadership power affect meeting effectiveness becomes essential, especially in Vietnamese organizations. First, the paper reviews factors affecting meeting effectiveness including leadership, agenda, substantive conflicts and internal communication. Next, a structured questionnaire was completed by a sample of 157 participants who are working at 31 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. Finally, the results reveal two antecedents affecting meeting effectiveness: Leadership and Substantive conflict. Leaders play the vital role in formulating an organization vision, making effective plans for vision implementation in reality as well as creating a healthy environment and organizational culture to grow ethical behaviors inside the organization. Their subordinates surely become more committed to the organization when they are working with inspirational leaders who willingly instruct them in uncertainty and encourage their abilities and talents. In addition, it is obvious that during the process of interaction, conflicts may exist and therefore how to resolve conflicts needs to be concerned. At any circumstances, most authors from previous studies believe that when conflicts occur in the meeting, if they are resolved in a constructive way, they will surely bring more benefits for the organizations.

Received January 24th, 2020; accepted February 18th, 2020; published May 1st, 2020.

2010 Mathematics Subject Classification. 90B50.

Key words and phrases. meeting effectiveness; leadership; substantive conflict; internal communication; agenda.

©2020 Authors retain the copyrights

#### 1- INTRODUCTION

Meetings are the common activities in every organization for several purposes such as fulfilling vital goals, making changes and exchanging ideas [57][65]. Obviously, all meetings are unlike. They vary in several ways, depending on the way people involved, group's size, tools used, management styles, and overall design of the meeting[62][70]. Moreover, much time and effort is devoted to work meetings with the aims of information sharing, decision making, and problem solving [2]. Moreover, meetings offer an exciting gateway to dynamic social processes in organizations [29]. During their meeting interactions, employees exchange information, build common ground, create new ideas, manage relationships, and make or break team climate [54].

Everyday experience makes it evident that, not all meetings are effective [23]. To most working adults, meetings are often viewed as time-wasters but better or worse, it becomes a common workplace activity, occurring everyday around the world. They play the central role of the work environment that can affect many different aspects of one's job, such as job satisfaction with several purposes which may include decision making, information sharing, product design and development. According to the previous reviews and surveys of managers and staff, Nicholas [36] also states that meetings are an important part of one's working life [36]. Above all, meetings need to be held to accomplish several tasks such as reaching important consensus, making changes, coming up with new ideas and the forth. According to previous researches, they reveal that as many as half of these meetings are considered poor in quality [69][66][62][61][68].

Meeting effectiveness, more or less, becomes crucial in Vietnamese organizations under more intense competition. Due to the difference from people in low-context culture in which people tend to be direct, verbal, explicit, and individualistic (US, most of Western Europe, etc.), Vietnamese people belong to high-context culture in which people are considered to be nonverbal, indirect, implicit and collectivistic (Vietnam, Greece, etc.) [25]. In most meetings, subordinates rarely or never raise their ideas, even though they disagree with ideas from their superiors. They are considered to be obedient and passive. In other meetings, some subordinates suggest solutions and receive an approval from their boss but it still doesn't work because the boss did promise but don't keep it. Vietnamese superiors seem to be so conservative and high-power distance [57][59]. They direct the meeting without agenda and lack of internal and problem-focused communication. That's the reason why most meetings in

Vietnamese organizations have poor quality, leading to diminish staff's job enthusiasm and in turn weakening the organizational commitment. Effective and efficient meetings will motivate subordinates make more contributions and increase commitment to their workplace. Thus, what makes meetings more effective are conducted [61] [58].

The paper aims to build a model of determinants to gain more effective meeting in Vietnamese organizations and through which meeting organizers can direct their meeting's quality more effectively and efficiently, later on facilitate and inspire their subordinates to have more engagement in organizational commitment. The authors design a survey based on the two research questions: What makes subordinates look forward to their work meetings? And What makes subordinate threatened by their work meetings?

## 2- LITERATURE REVIEW

## 2.1 Meeting effectiveness

In general, meetings are considered as the strategic role in the Social Practice that brings consequential strategic outcomes to the organization [59][55][52][67]. Furthermore, they can be recognized as the focal points for organizational members' essential activities [17]. There are several types of meeting such as board meetings, committee meetings, departmental meetings and so forth [6].

Rogelberg [40] points out that if the meetings are effective in facilitating organizations and employees to reach their goals, their benefits as an organizational tool is obvious[40]. Thus, meeting effectiveness needs to be improved in order to get higher performance of organizational members. It was closely related to goal attainment and decision satisfaction. The research suggests that effective meetings need to be open in communicating, task-focused, impartial and strict to the use of agenda [3][37].

According to Nixon [37], employees' goals and an organization's goals will lead to meeting effectiveness which is a timed process as well. It should bring benefits to the entire organization. The effective meeting shouldn't be lack of the clear purpose and specific agenda, date, duration and materials [5]. Besides that, Bagire [5] emphasized that the central role of the chairperson who conducts the meeting decides the meeting effectiveness.

Put it another way, some authors state several factors affecting meeting productivity such as irrelevant topics or issues, excessive length of time and poor or inadequate preparation

[36]. Volkema [47] emphasized that not only the use of agenda and meeting minutes but also the role of group leaders/facilitators controlling the meeting affect the meeting effectiveness [47].

Researchers of ethnography have more explanations in the differentiation of behaviors and attitudes of organizational members, known as organizational culture and they also state that cultural behaviors to some extent enforce the rules, laws and norms. For instances, the meanings of communication are implied by the culture and the context of an organization [42]. Sharing activities among organizational members are shaped by organizational values. The way members share their insights will be supported by behaviors from organizational culture [1]. Undoubtedly, in order to make meeting effective, several factors need to be discussed.

Actually, an organization is mostly influenced by the top leader who has the strongest power in final decision-making. This most powerful person will get involved either directly or indirectly in the meeting decision. A middle manager who hosts the meeting is still there but unable to conclude or give any solutions. As a result, the leader's style and role become a decisive factor in setting organizational culture. It is known as leadership.

# 2.2 Leadership

From the meeting literature perspective, the role of the meeting leader is vital [37]. In a highly diverse workforce, leadership becomes too complicated and needs to be more skillful. It is considered as the key factor in determining whether the organization succeeds [30]. The style of leading should be "simpatico" or "diversity-friendly". A diversity leader from CEO to the first line supervisor is considered as corporate manager who leads subordinates in a fair, effective and respectful way. Nine characteristics that a diversity leader must possess are Sensitive, Impartial, Mediators, Patient, Amiable, Teachers, Involved, Communicators, and Optimistic [15]. Also, in term of leadership, Simola [43] recommends transformational leadership in which leaders aim to transform, motivate and enhance their subordinates' actions and ethical aspirations. It contains four dimensions which are idealized influence, inspirational motivation, intellectual stimulation and individualized consideration [19] [43]. Furthermore, this type of leadership brings more benefits for leading present workgroups because today's followers turn more challenged and empowered. Followers are in the need of an inspirational leader to guide them in uncertainty and intellectually stimulate and encourage their abilities and talents [7]. Put it another way, Kirkpatrick [20] emphasizes leader's traits which include

achievement, motivation, ambition, energy, tenacity and initiative. Leaders should be provided essential skills such as formulating an organization vision, making effective plans for vision implementation in reality [20].

From most previous studies about leadership, the type of charisma becomes emerging. Partly like ethical one, emotionality is the main dimension in charismatic leadership, the nature of which is not very rational. Problem-solving is not mostly based on authority but rather on personal characteristics [26]. Leadership cannot be fulfilled without groups who have the common goals. Surely, it is hard for leaders or managers effectively achieving organization's goals and that the leader can only achieve goals through followers' efforts and actions [4]. Fry [12] highly appreciates type of servant leadership which consists of four elements such as being a servant first, making sure that other people's needs are served; serving through listening; serving through people building and serving through leadership creation [12]. Similarly, another type of leadership is transformational leadership by which leaders motivates followers by appealing to their higher-order needs and induce employees to transcend self-interest for the sake of the group or the organization [31]. For the emphasis, Wallis [48] strengthens that followers are mainly influenced by leadership's inspiration in which values and beliefs are shared by both leaders and followers. Zhu [51] believes in ethical leaders who behave morally and always tend to create a healthy environment and organizational culture to grow ethical behaviors inside the organization [51]. Above all, researchers in this field point out several definitions of leadership, but to what extent, leadership is defined or limited by its cultural context [48]. In reality, the meeting will be more effective if it is led by the transitional or charismatic leadership. Therefore, the authors propose:

Proposition 1: Leadership significantly affects meeting effectiveness.

Besides leadership, internal communication assists to transform information more specifically and effectively.

## 2.3 Internal Communication

Internal communication is an essential process by which people exchange information, create relationship and build organizational culture and values as well. It is somehow called employee communication [10][30]. Moreover, Martic [27]emphasizes "Through internal communication, executives "pilots" the organization, as well as assure and guide employees to

follow the mission and goals, encourage loyalty, enhance employees to identify with the organization, increase their motivation and satisfaction with their work, develop mutual positive relationships between employees and the impact on the socialization of employees and organizational culture." [27]. Above all, the best method for facilitating employees to gain specific goals is face-to-face communication [38].

Even though, several blocks in communication happen such as age, gender, previous history of organization, distrust in management, regional differences and so far [44]. If it is symmetrical, it has the positive effect on the relationship between employees and their organization which in turn leads to employee advocacy. Men [30] also claims that there is a linkage among leadership, communication and employee outcomes which positively cultivates the quality of this relationship [31][32]. If communication is effective, it plays as an useful weapon for an organization [41][50].

Communication behaviors have an indirect contribution to the success of the company through employee attitudes[28]. Furthermore, effective communication will foster the closer relationship between senior managers and employees[50]. Especially, in the change process, along with commitment, social and cultural values, it plays a key role in which employees share information, build relationship and make things meaningful [24] [33]. From the same view point, Daly [19] strengthens that internal communication is also a key issue with regard to how successful change management programmers are performed [19]. In the process of constructing a culture of transparency in an organization between management and employees, face-to-face communication is one of the important means of internal communication [34]. Mishra [34] and Vercic [46] strongly state that the executives choose communication strategies in the aim of building trust and engagement with employees and actually, they consider internal communication as a management function in charge of intra-organizational communication [34][46]. And therefore, this is the proposition of the relationship between international communication and meeting effectiveness.

Proposition 2: Internal communication significantly affects meeting effectiveness.

It is unavoidable that internal communication may cause conflicts. How to manage conflicts is considered as art and science. From the perspective of conflict literature, substantive conflict is highly recommended.

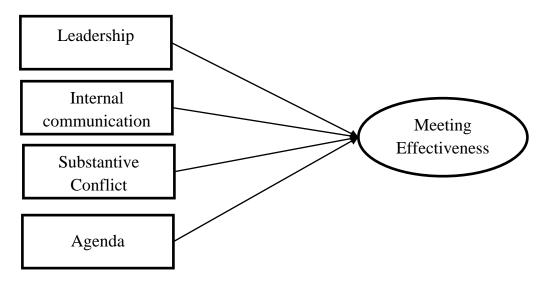
#### 2.4 Substantive Conflict

One of the strategic problems occurring in the workplace is conflict. Organizational members, everyday face with resolving conflicts with subordinates, supervisors, peers and stakeholders [39]. Conflict [11][35] normallyrelates to a negative connotation which should be undesirable and avoided. It may originate from an individual, a team or an organization and often results in disagreement and frustration but not all conflicts are harmful. Previous studies reveal that groups in conflict would terminate or reach a consensus in decision-making [13][22] meetings. Esquive [11] also finds out the positive effect of conflict on the process of making decision. Conflict consists of two different types which are called C-type conflict and A-type conflict. While the former is substantive, issue-related differences of opinion that tend to improve team effectiveness and originated from the agenda's content, the latter depends on personal feelings, someone's own agenda or interpersonal struggle related to the group's agenda problems[11][13]. Guetzkow [13] named these two types: subjective conflict and affective conflict.

Conflict is caused by 3 main ingredients which are individual characteristics, interpersonal factors and issues. The three most prominent categories of conflict management style are avoidance, distributive, and integrative [21]. While avoidance style tends to ignore or shift a conversation to a different issue, distributive is a confrontive approach. Among the three styles, integrative brings more effective decision, implying an effort to come to the best or at least agreeable solution for all concerned members. From another perspective, conflict is also classified by the two dimensions of assertiveness and cooperativeness, expressed by five conflict-handling modes including competing, collaborating, compromising, avoiding vand accommodating) [45]. Moderators that can influence in conflict [18] are "amplifiers (those variables that amplify the conflict-outcome relationship, strengthening both the positive and negative effects), suppressors (those variables that weaken both the positive and negative effects on outcomes), ameliorators (those variables that decrease negative effects and increase positive effects), and execrators (those variables that increase negative effects of conflict and decrease positive effects)" [18]. Importantly, effective managers select a range of different strategies in different contexts, aiming at achieving a desirable outcome [14]. Ultimately, substantive conflict is considered to have much positive effects on meeting effectiveness. Therefore, the proposition is suggested as:

*Proposition 3: Substantive conflict significantly affects meeting effectiveness.* 

Even though, several prominent factors affecting meeting effectiveness are abovementioned, it would be inadequate without agenda of the meeting in advance.


# 2.5Agenda

Agenda is another meeting issue that need to be concerned because it affects member preparation, time-use effectiveness and finally, meeting effectiveness [37]. Depending on agenda-based meeting management, an agenda enables meeting leaders to manage one or more meetings for locally-located participants, remote participants or both [8].

Basically, an agenda makes teamwork more task-focused and issue-focused. It is viewed as the "purchase point" decision for team members [16]. A formal meeting agenda brings meeting participants or members involved specific information about the structure of a meeting time, place, topics related, or other preparatory work [49]. Moreover, it keeps the meeting happening in the correct sequence and covering the right topics. There are a couple of benefits for either the chair of the meeting to make sure the agenda is correct or participants to prepare for a meeting [6]. Above all, an agenda in advance is indispensable to meeting effectiveness. As a result, the proposition is suggested as:

Proposition 4: Agenda significantly affects meeting effectiveness.

To sum up, from previous studies of the meeting literature, it seems that there are four dominant factors affecting meeting effectiveness in the context of Vietnamese organizations as the authors' suggestion in the following conceptual model.



The conceptual model

#### 3- METHOD AND RESULTS

## **Data Collection**

The data for the research is based on the survey of one hundred and fifty-seven participants who are working at about 31 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. Specifically, they all are subordinates with various titles from middle managers to staffs, but not in the top management board. In other words, participants are those who lead a meeting, but still are led by other meeting organizers. The questionnaires included five variables: meeting effectiveness, agenda, leadership, substantive conflict and internal communication and were distributed as hard copies that required handwritten responses. These questions contained 30 items using five-point Likert scale: totally disagree, disagree, neutral, agree, and totally agree. A total of completed 157 questionnaires performed within five months in Hochiminh City and Kien Giang Province in southern Vietnam were returned and valid. Quantitative research is conducted by non-probability sampling.

# Data analysis and Results

To ensure the items in the questionnaire and the model to be valid and reliable, a part of the questionnaires is conducted as a pilot test for testing the clarity of contents and misspelling. Then, one hundred and fifty-seven participants are surveyed. The result is applied SPSS software with the following steps: Statistic analysis; evaluation of Cronbach alpha for each factor; EFA, then used Amos to analyze SEM model based on the EFA's result.

The result of descriptive statistics shows that it ranged with mean from 3.55 to 4.17 (*Table 1*).

Table 1. Descriptive statistics

|                                                            | N   | Minimum | Maximum | Mean | Std. Deviation |
|------------------------------------------------------------|-----|---------|---------|------|----------------|
| AGEN1.Meetings start on time.                              | 157 | 1       | 5       | 4.13 | .899           |
| AGEN2.Meetings end when you expect them to end.            | 157 | 1       | 5       | 3.66 | 1.010          |
| AGEN3.A written agenda is provided before the meetings.    | 157 | 1       | 5       | 4.09 | .929           |
| AGEN4.Overall, I am satisfied with the meeting process.    | 157 | 1       | 5       | 3.81 | .761           |
| AGEN5.The meeting was time well spent.                     | 157 | 1       | 5       | 3.80 | .845           |
| AGEN6.A verbal agenda is provided at the meetings.         | 157 | 1       | 5       | 3.92 | .874           |
| LDS1.In the meeting, the leader will express the objective | 157 | 1       | 5       | 3.95 | .830           |
| opinion with followers.                                    | 137 | 1       | 3       | 3.93 | .630           |
| LDS2.In the meeting, the leader will remain impartial      | 157 | 1       | 5       | 3.90 | .846           |
| rather than speaking out and expressing his/her views.     | 157 | 1       |         | 3.70 | .040.          |
| LDS3.In the meeting, the leader will express the           | 157 | 1       | 5       | 3.85 | .856           |
| nonconservative opinion with followers.                    | 157 | 1       |         | 3.03 | .000           |
| LDS4.In the meeting, the leader will interact with         | 157 | 1       | 5       | 3.90 | .826           |
| followers- social distance is low.                         | 157 | 1       |         | 3.70 | .020           |
| LDS5.In the meeting, the leader will support and           | 157 | 1       | 5       | 4.03 | .812           |
| encourage followers to express their ideas.                | 157 | 1       |         | 4.03 | .012           |
| LDS6.In the meeting, the leader will foster group goals.   | 157 | 1       | 5       | 4.17 | .741           |
| LDS7.In the meeting, the leader will communicate a high    |     |         |         |      |                |
| degree of confidence in the followes' ability to meet      | 157 | 1       | 5       | 3.83 | .831           |
| expectations.                                              |     |         |         |      |                |
| LDS8.In the meeting, the leader will express high          | 157 | 1       | 5       | 4.06 | .727           |
| performance expectations for followers.                    | 107 | 1       |         | 1.00 | ., _,          |
| LDS9.In the meeting,the leader provides                    | 157 | 1       | 5       | 3.87 | .830           |
| recognition/rewards when others reach their goals.         | 10. | -       |         | 0.07 | .000           |
| LDS10.In the meeting, the leader empowers his/her          | 157 | 1       | 5       | 3.55 | .957           |
| followers to make the final decision.                      | 10. | -       |         | 0.00 | 1,507          |
| CFT1.When conflicts happen in the meeting, your leader     |     |         |         |      |                |
| and the group search for the real causes of the problem    | 157 | 1       | 5       | 3.94 | .778           |
| and find out suitable solutions.                           |     |         |         |      |                |
| CFT2.When conflicts happen in the meeting, your leader     |     |         |         |      |                |
| provides the accurate information and solves together      | 157 | 1       | 5       | 3.93 | .743           |
| with flollowers.                                           |     |         |         |      |                |
| CFT3.When conflicts happen in the meeting, your leader     |     |         |         |      |                |
| combines his/her opinion with the group's opinion for      | 157 | 1       | 5       | 3.84 | .820           |
| making the final decision.                                 |     |         |         |      |                |
| IC1.This company encourages differences of opinions.       | 157 | 1       | 5       | 3.89 | .725           |
| IC2.Most communication between management and other        |     |         |         |      |                |
| employees in this organization can be said to be two-way   | 157 | 1       | 5       | 3.80 | .838           |
| communication.                                             |     |         |         |      |                |
| IC3.Your leader makes you feel comfortable working with    | 157 | 1       | 5       | 3.85 | .778           |
| him/her.                                                   |     |         |         |      |                |

| IC4.You would feel comfortable working with your leader.                                                 | 157 | 1 | 5 | 3.73 | .859 |
|----------------------------------------------------------------------------------------------------------|-----|---|---|------|------|
| MET1.When the meeting is finally over, you feel satisfied with the results.                              | 157 | 1 | 5 | 3.80 | .766 |
| MET2.The meeting states each problem with a clear solution.                                              | 157 | 1 | 5 | 3.83 | .839 |
| MET3.Most of conflicts raising in the meeting are solved satisfactorily.                                 | 157 | 1 | 5 | 3.55 | .865 |
| MET4.After the meeting, you achive your work goals.                                                      | 157 | 1 | 5 | 4.01 | .789 |
| MET5.After the meeting, you get your leader's understanding about your difficulties.                     | 157 | 1 | 5 | 3.72 | .861 |
| MET6.After the meeting, you receive your leader's instruction and sympathy with what you are fulfilling. | 157 | 1 | 5 | 3.80 | .822 |
| MET7. The meeting provides you with an opportunity to acquire useful information.                        | 157 | 1 | 5 | 3.98 | .755 |
| Valid N (listwise)                                                                                       | 157 |   |   |      |      |

EFA factor analysis is classified into 2 steps. While the first step is for independent variables, the second step is for the dependent variable. The first step, 4 independent variables are included in EFA factor analysis with principal components method and rotation varimax. KMO and Bartlett's test is significant (p<.001)and Kaiser-Meyer-Olkin Measure of Sampling Adequacy equal to 0.920 (>0.5) (*Table 2*) and the evaluation of Cronbach alpha is .953.

Table 2. KMO and Bartlett's Test

| Kaiser-Meyer-Olkin Measure    | .920               |          |
|-------------------------------|--------------------|----------|
|                               |                    |          |
| Bartlett's Test of Sphericity | Approx. Chi-Square | 2593.761 |
|                               | df                 | 253      |
|                               | Sig.               | .000     |
|                               | Sig.               | .000     |

After Rotation method Varimax with Kaiser Normalization, 22 items of independent variables are grouped into 4 groups. However, factor 4 contains only 1 item which should be eliminated. Therefore, there actually exits 3 groups with 21 items which are named as Leadership for group 1, Agenda for group 2 and Conflicts for group 3. Meeting effective ness contains 7 items and is also named meeting effectiveness.

The evaluation of Cronbach alpha after EFA analysis for 3 factors: Leadership, Agenda and Conflict are simultaneously at .944; .814; and .817 (*Table 3*). They all are accepted.

Table 3. EFA result

Rotated Component Matrixa

|                | Component |        |        |      |
|----------------|-----------|--------|--------|------|
|                | 1         | 2      | 3      | 4    |
| AGEN1          |           |        | .782   |      |
| AGEN2          |           |        | .806   |      |
| AGEN3          |           | .731   |        |      |
| AGEN4          |           | .661   |        |      |
| AGEN5          | .543      | .512   |        |      |
| AGEN6          |           | .742   |        |      |
| LDS1           | .598      |        |        |      |
| LDS2           | .584      |        |        |      |
| LDS3           | .649      |        |        |      |
| LDS4           | .767      |        |        |      |
| LDS5           | .722      |        |        |      |
| LDS6           | .674      |        |        |      |
| LDS7           | .604      |        |        |      |
| LDS8           | .523      |        |        |      |
| LDS9           |           |        |        |      |
| LDS10          |           |        |        | .876 |
| CFT1           | .572      |        | .538   |      |
| CFT2           | .619      |        | .546   |      |
| CFT3           | .572      |        |        |      |
| IC1            | .587      |        |        |      |
| IC2            | .775      |        |        |      |
| IC3            | .826      |        |        |      |
| IC4            | .775      |        |        |      |
| Eigenvalue     | 7.829     | 2.568  | 2.637  |      |
| Cumulative     | 60.222    | 64.294 | 65.917 |      |
| Cronbach Alpha | .944      | .814   | .817   |      |

Next, the depedent variable "Meeting effectiveness" is evaluated by KMO and Barlett's Test and EFA analysis. The result is that the evaluation of Cronbach alpha for dependent variable "Meeting effectiveness" is .909 which is also accepted. Furthermore, KMO and Bartlett's test is significant (p<.001) and Kaiser-Meyer-Olkin Measure of Sampling Adequacy equals to 0.891 (>0.5) and factor loadings are all more than .50.

Table 4. KMO and Bartlett's Test

KMO and Bartlett's Test

| Kaiser-Meyer-Olkin Measure    | .891                                             |      |  |  |
|-------------------------------|--------------------------------------------------|------|--|--|
| Bartlett's Test of Sphericity | Bartlett's Test of Sphericity Approx. Chi-Square |      |  |  |
|                               | Df                                               | 21   |  |  |
|                               | Sig.                                             | .000 |  |  |

Table 5. Component Analysis

# Communalities

|      | Initial | Extraction |
|------|---------|------------|
| MET1 | 1.000   | .683       |
| MET2 | 1.000   | .715       |
| MET3 | 1.000   | .645       |
| MET4 | 1.000   | .693       |
| MET5 | 1.000   | .598       |
| MET6 | 1.000   | .628       |
| MET7 | 1.000   | .579       |

# CFA Factor Analysis

Figure 1. Results of CFA concepts of research model (standardized)

P=.000;

CFI = .871; TLI = .858; GFI = .743;

RMSEA = .089.

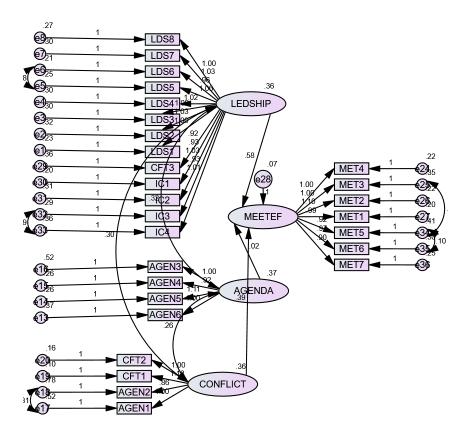



Table 6. Standardized Regression Weights

|        |   |          | Estimate | S.E. | C.R.   | P    | Label |
|--------|---|----------|----------|------|--------|------|-------|
| MEETEF | < | LEDSHIP  | .683     | .255 | 2.679  | .007 |       |
| MEETEF | < | AGENDA   | 023      | .185 | 124    | .901 |       |
| MEETEF | < | CONFLICT | .408     | .122 | 3.353  | ***  |       |
| LDS2   | < | LEDSHIP  | 1.216    | .136 | 8.912  | ***  |       |
| LDS3   | < | LEDSHIP  | 1.261    | .138 | 9.128  | ***  |       |
| LDS4   | < | LEDSHIP  | 1.215    | .133 | 9.115  | ***  |       |
| LDS5   | < | LEDSHIP  | 1.250    | .131 | 9.525  | ***  |       |
| LDS6   | < | LEDSHIP  | 1.135    | .120 | 9.476  | ***  |       |
| LDS7   | < | LEDSHIP  | 1.214    | .134 | 9.055  | ***  |       |
| LDS8   | < | LEDSHIP  | 1.000    |      |        |      |       |
| AGEN5  | < | AGENDA   | 1.260    | .176 | 7.172  | ***  |       |
| AGEN4  | < | AGENDA   | 1.012    | .150 | 6.736  | ***  |       |
| AGEN3  | < | AGENDA   | 1.000    |      |        |      |       |
| AGEN1  | < | CONFLICT | 1.000    |      |        |      |       |
| AGEN2  | < | CONFLICT | .864     | .108 | 8.003  | ***  |       |
| CFT1   | < | CONFLICT | 1.175    | .077 | 15.185 | ***  |       |
| CFT2   | < | CONFLICT | 1.000    |      |        |      |       |
| MET04  | < | MEETEF   | 1.000    |      |        |      |       |
| MET03  | < | MEETEF   | 1.001    | .101 | 9.885  | ***  |       |
| MET02  | < | MEETEF   | 1.101    | .094 | 11.677 | ***  |       |
| MET01  | < | MEETEF   | .984     | .087 | 11.347 | ***  |       |
| CFT3   | < | LEDSHIP  | 1.090    | .132 | 8.244  | ***  |       |
| IC01   | < | LEDSHIP  | 1.091    | .117 | 9.329  | ***  |       |
| IC02   | < | LEDSHIP  | 1.230    | .135 | 9.099  | ***  |       |
| IC03   | < | LEDSHIP  | 1.110    | .125 | 8.851  | ***  |       |
| IC04   | < | LEDSHIP  | 1.218    | .139 | 8.787  | ***  |       |
| MET05  | < | MEETEF   | .914     | .104 | 8.827  | ***  |       |
| MET06  | < | MEETEF   | .970     | .096 | 10.140 | ***  |       |
| MET07  | < | MEETEF   | .898     | .088 | 10.239 | ***  |       |

The results of CFA factor analysis of the research model are presented in Figure 1. While processing data, the authors eliminate two items which are LDS1 and AGEN6 because they are insignificant in the model in order to produce the valid results. These results show that the conditions are stated as follow: P < 0.05; CFI, GFI  $\geq 0.8$  and RMSEA is approximately0.08. They all meet the requirements. Considering the above conditions, the model is consistent with market data.

Based on the results in *Table 6*, the parameters (standardized) are statically significant (p<0.05). According to the regression weight between factors shown, two factors that are Leadership and Substantive conflict have significant effects on Meeting effectiveness with weight of 0.683 and 0.408 and P-value <0.05respectively, while Agenda with weight of -0.023 and P-value 0.901does not. In other words, Leadership affects positively meeting effectiveness and when Leadership goes up by 1 standard deviation, Meeting effectiveness goes up by 0.683 standard deviation. Similarly, when Substantive conflict increases by 1 standard deviation, Meeting effectiveness increases by 0.408 standard deviation.

## **4- DISCUSSION**

Meetings become frequent activities in every organization for such purposes as fulfilling vital goals, making changes and exchanging ideas. It is evident that meeting effectiveness is closely related to goal attainment and decision satisfaction. Therefore, meetings need be improved in an effective and efficient way so that subordinates make more contributions and increase commitment to their workplace.

It is found that meeting effectiveness is significantly influenced by the two dominant factors consisting of leadership and substantive conflict. From previous study, Kirkpatrich [20] confirms that leader's styles such as achievement, motivation, ambition, energy, tenacity and initiative are highly appreciated. They should be trained essential skills: formulating an organization vision, making effective plans for vision implementation in reality [20]. Besides, both leaders and subordinates should have the common goals [4]. Servant leadership in which leaders need to make sure that other people's needs are served by listening and observing is strongly recommended by [12]. Furthermore, Wallis [48]and Zhu [51] also emphasize that leadership's inspiration should be shared with followers and the leaders should behave morally

and always expect to create a healthy environment and organizational culture to grow ethical behaviors inside the organization.

Actually, whether the meeting is effective or not depends on the meeting leaders' guide. Actually, leadership plays a very important role in transforming, motivating and enhancing subordinates 'actions and ethical aspirations. Subordinates surely become more committed to the organization when they are working with inspirational leaders who willingly instruct them in uncertainty and encourage their abilities and talents [7]. That's why leadership strongly affects meeting effectiveness in reality.

During the process of interaction, conflicts may exist and therefore, how to resolve conflicts needs to be concerned. Conflicts are double-faced. While affective conflict may improve and bring benefits to team effectiveness, subjective one may destroy the relationship and reduce members' job performance [11][13]. Transparently, from previous studies, substantive conflicts which are issue-related differences of opinion are proved to aim at improving team effectiveness. It also confirms that substantive conflicts positively influence meeting effectiveness.

In short, empirically, in order to host a meeting effectively, meeting organizers should control their leadership in a proper way and solve thoroughly any conflicts raising in a constructive way.

## 5-IMPLICATIONS AND CONCLUSION

## **Implications**

For future research, based on the literature of meeting effectiveness, it also has the great impact on organizational commitment. Therefore, what we should do next is to find out the relationship between meeting effectiveness and organizational commitment which motivates and inspires subordinates to engage more closely in their organization.

## Conclusion

The findings show practical meaning of meeting effectiveness in the context of Vietnamese organizations. Empirically, the two significant factors that mainly affect meeting effectiveness are Leadership and Substantive conflict. Based on the previous studies in the world [16] agenda plays an essential role in the meeting, but the result shows that it's statistically insignificant with P-value equals to 0.90 > 0.05 which is showed in Table 6 - Standardized Regression Weights. Regarding to national values differences across the worldwide subsidiaries, while according to Western cultures, people belong to polychromic culture, they tend to be on time, and Vietnamese people almost belonging to Asian culture tend to be influenced by polychromic culture [25].

**Conflicts of Interest:** The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

## References

- [1] Alavi, M., Kayworth, T. R., & Leidner, D. E. An Empirical Examination of the Influence of Organizational Culture on Knowledge Management Practices. J. Manage. Inform. Syst. 22(3)(2005-6), 191–224.
- [2] Allen, J., Sands, S., Mueller, S., Frear, K., Mudd, M. and Rogelberg, S. Employees' feelings about more meetings: An overt analysis and recommendations for improving meetings, Manage. Res. Rev. 35(5) (2012), 405-418.
- [3] Allen, J. A., Willenbrock, N. L., & Landowski, N. Linking pre-meeting communication to meeting effectiveness. J. Manager. Psychol. 29(2014), 1064-1081.
- [4] Andersen, J. A. Leadership, personality and effectiveness, J. Soc. Econ. 35(6) (2006), 1078-1091.
- [5] Bagire, V., Byarugaba, J., & Kyogabiirwe, J. Organizational meetings: management and benefits, J. Manage. Develop. 34(8)(2015), 960 972.
- [6] Baker, H. Writing Meeting Minutes and Agenda. Lancashire, UK: Universe of Learning Ltd. (2010).
- [7] Bass, B. M., & Riggio, R. E. Transformational Leadership. London: Lawrence Erlbaum Associates, Inc.(2006).
- [8] Butt, D. Agenda based meeting management system, interface and method. Google Patents. (2006).
- [9] Daly, P. J. K. F. Internal communication during change management. Corp. Commun. 17(2002), 46-53.

- [10] Deetz, S. Conceptual foundations In The new handbook of organizational communication: Advances in theory, research and methods (pp. 3-46): Thousand Oaks, CA: Sage. (2001).
- [11] Esquivel, M. A., & Kleiner, B. H. The importance of conflict in work team effectiveness, Team Perform. Manage. 2(3)(1996), 42 48.
- [12] Fry, L. W., Matherly, L. L., Whittington, J. L., & Winston, B. E. Spiritual Leadership as an Integrating Paradigm for Servant Leadership.Integrat. Spirit. Organiz. Leadership. (2007), 70-82.
- [13] Guetzkow, H., & Gyr, J. An analysis of conflict in decision-making groups. Human Relations, 7(3) (1954), 367-382.
- [14] Holmes, J. M., Marra, M. Leadership and Managing Conflict in Meetings. Int. Pragmat. Assoc. 14(4)(2004), 439-462.
- [15] Hopkins, W. E., & Hopkins, S. A. Diversity Leadership: A mandate for the 21st Century Workforce. J. Leadership Stud. 5(3)(1998), 129-140.
- [16] Inglis, S., & Weaver, L. Designing Agendas to Reflect Board Roles and Responsibilities: Results of a Study, Nonprofit Manage. Leadership, 11(1)(2000), 65-77.
- [17] Jarzabkowski, P., & Seidl, D. The Role of Meetings in the Social Practice of Strategy. Organ. Stud. 29(11)(2008), 1391-1426.
- [18] Jehn, K. A., & Bendersky, C. Intragroup conflict in organizations: a contingency perspective on the conflict-outcome relationship. Res. Organ. Behavior, 25(2003), 187–242.
- [19] Judge, T. A., & Bono, J. E. Five-Factor Model of Personality and Transformational Leadership. J. Appl. Psychol. 85(5)(2000), 751-765.
- [20] Kirkpatrick, S. A., & Locke, E. A. Leadership: Do traits matters? Acad. Manage. Execut. 5(2)(1991), 48-60.
- [21] Kuhn, T., & Poole, M. L. Do Conflict Management Styles Affect Group Decision Making?. Human Commun. Res. 26(4)(2000), 558–590
- [22] Laursen, B., & Collins, W. A. Interpersonal Conflict During Adolescence. Psychol. Bull. 115(2)(1994), 197-209.
- [23] Leach, D. J., Rogelberg, S. G., Warr, P. B., & Burnfield, S. G. Perceived meeting effectivenss: The role of Design characteristics. J. Bus. Psychol. 24(2009), 65-76.
- [24] Linke, A., & Zerfass, A. Internal communication and innovation culture: developing a change framework, J. Commun. Manage. 15(4)(2011), 332-348.
- [25] Locker, K., & Keinzler, D. Business and Administrative Communication (9th ed.), Mc Graw, (2009).

- [26] Marjosola, I. A., & Takala, T. Charismatic leadership, manipulation and the complexity of organizational life. J. Workplace Learning, 12 (4) (2000), 146-158.
- [27] Martic, M. Communication between employees. Paper presented at the Symorg 2014, Serbira, 2014.
- [28] Mazzei, A. Promoting active communication behaviours through internal communication, Corp. Commun., Int. J. 15(3)(2010), 221-234
- [29] Meinecke, A. L., & Lehmann-Willenbrock, N. K. Social dynamics at work: Meetings as a gateway, In J. A. Allen, N. Lehmann-Willenbrock, & S. G. Rogelberg (Eds.), Cambridge handbooks in psychology. The Cambridge handbook of meeting science (p. 325–356). Cambridge University Press, (2015).
- [30] Men, L. R. Strategic Internal Communication: Transformational Leadership, Communication Channels, and Employee Satisfaction. Manage. Commun. Q. 28(2)(2014), 264 –284
- [31] Men, L. R.Why Leadership Matters to Internal Communication: Linking Transformational Leadership, Symmetrical Communication, and Employee Outcomes. J. Public Relat. Res. 26(2014), 256–279.
- [32] Men, L. R., & Jiang, H. Cultivating Quality Employee-Organization Relationship. Int.J.Strat.Commun. 10(5)(2016), 462–479.
- [33] Men, L. R., & Stacks, D. The Effects of Authentic Leadership on Strategic Internal Communication and Employee-Organization Relationships, J. Public Relat. Res. 26(2014), 301-324.
- [34] Mishra, K., Lois Boynton, L., & Mishra, A. Driving Employee Engagement: The Expanded Role of Internal Communications. Int. J. Bus. Commun. 51(2)(2014), 183 –202.
- [35] Morton Deutsch, M., Coleman, P. T., & Marcus, E. C. Culture and Conflict. In The Handbook of Conflict Resolution (pp. 641). San Francisco, CA 94103-1741 Jossey-Bass A Wiley Imprint, (2006).
- [36] Nicholas, C. R., & Jay, F. N. Meeting Analysis: Findings from Research and Practice, Proceedings of the 34th Annual Hawaii International Conference on System Sciences, Maui, HI, USA.(2001).
- [37] Nixon, C. T., & Littlepage, G. L. Impact of meeting procedures on meeting effectiveness. J. Bus. Psychol. 6(2014), 361-369.
- [38] Okanovic, M., Stefanovic, T., & Suznjevic, M. New Media in Internal Communication. Paper presented at the Symorg 2014, Serbira, (2014).
- [39] Putnam, L. L. Communication and Interpersonal Conflict in Organizations, Manage. Commun. Q. 1(1988), 293-301.
- [40] Rogelberg, S. G., Leach, D. J., Warr, P. B., & Burnfield, J. L. "Not Another Meeting!" Are Meeting Time Demands Related to Employee Well-Being? J. Appl. Psychol. 91(1)(2006), 86-96.

- [41] Ruck, K., & Welch, M.Valuing internal communication; management and employee perspectives. Public Relat. Rev. 38(2012), 223-230.
- [42] Safriadi, Hamdat, S., Lampe, M., & Munizu, M. (2006). Organizational Culture In Perspective Anthropology, Int. J. Sci. Res. Publ. 6(6) (2016), 773-776.
- [43] Simola, S., Barling, J., & Turner, N. (2012). Transformational leadership and Leader's Mode of Care Reasoning, J. Bus. Ethics, 108(2012), 229–237.
- [44] Smith, L., & Mounter, P. Effective Internal Communication. USA: Replika Press Pvt Ltd, (2008).
- [45] Thomas, K. W.Conflict and Conflict Management: Reflections and Update. J. Organ. Behavior, 13(1992), 265-274.
- [46] Vercic, A. T., Vercic, D., & Sriramesh, K. Internal Communication: Definition, parameters, and the future. Public Relat. Rev. 38(2012), 223-230.
- [47] Volkema, R. J., & Fred Niederman, F. Planning and Managing Organizational Meetings: An Empirical Analysis of Written and Oral Communications, J.Bus. Commun. 33(1996), 275-296.
- [48] Wallis, J. Drawing on revisionist economics to explain the inspirational dimension of leadership. J. Soc. Econ. 31(2002), 59-74.
- [49] Welch, D. D. Conflicting Agendas. Eugene, Oregon: Published by The Pilgrim Press, (2008).
- [50] Welch, M. (2011). Appropriateness and acceptability: Employee perspectives of internal communication. Public Relat. Rev.38(2) (2012), 246-254.
- [51] Zhu, W., May, D. R., & Avolio, B. J. The Impact of Ethical Leadership Behavior on Employee Outcomes: The Roles of Psychological Empowerment and Authenticity. J. LeadershipOrgan. Stud. 11 (1)(2004), 16-26.
- [52] Pham, L. H. T., Nguyen, N. T., & Tran, T. T. On the factors affecting start-up intention of Millennials in Vietnam. In. J. Adv. Appl. Sci. 6(1)(2019), 1-8.
- [53] Nguyen N.T., Nguyen B.P.U., and Tran T.T. Application of grey system theory and ARIMA model to forecast factors of tourism: A case of Binh Thuan Province in Vietnam. Int. J. Adv. Appl. Sci. 7(1)(2020), 87-99.
- [54] Nguyen N.T., Nguyen T.T.T., and Tran T.T. Forecasting Vietnamese tourists' accommodation demand using grey forecasting and ARIMA models. Int. J. Adv. Appl. Sci. 6(11)(2019), 42-54.
- [55] Nguyen, N. T. Optimizing Factors for Accuracy of Forecasting Models in Food Processing Industry: A Context of Cacao Manufacturers in Vietnam. Ind. Eng. Manage. Syst. 18(4)(2019), 808-824.
- [56] Nguyen, N. T., & Nguyen, L. X. T. Applying DEA Model to Measure the Efficiency of Hospitality Sector: The Case of Vietnam. Int. J. Anal. Appl. 17(6) (2019), 994-1018.

- [57] Nguyen, N. T., & Tran, T. T. Mathematical development and evaluation of forecasting models for accuracy of inflation in developing countries: a case of Vietnam. Discrete Dyn. Nat. Soc. 2015(2015), Article ID 858157.
- [58] Nguyen, N. T., & Tran, T. T. Facilitating an advanced product layout to prioritize hot lots in 450 mm wafer foundry in the semiconductor industry. Int. J. Adv. Appl. Sci. 3(6) (2016), 14-23.
- [59] Nguyen, N. T., & Tran, T. T. A two-stage study of grey system theory and DEA in strategic alliance: An application in Vietnamese fertilizing industry. Int. J. Adv. Appl. Sci. 5(9) (2018), 73-81.
- [60] Nguyen, N. T., & Tran, T. T. A Study of the Strategic Alliance for Vietnam Domestic Pharmaceutical Industry: A Dynamic Integration of A Hybrid DEA and GM (1, 1) Approach. J. Grey Syst. 30(4)(2018), 134-151.
- [61] Nguyen, N. T., & Tran, T. T. A two-stage study of grey system theory and DEA in strategic alliance: An application in Vietnamese fertilizing industry. Int. J. Adv. Appl. Sci. 5(9)(2018), 73-81.
- [62] Nguyen, N. T., & Tran, T. T. Raising opportunities in strategic alliance by evaluating efficiency of logistics companies in Vietnam: a case of Cat Lai Port. Neural Comput. Appl. 31(11)(2019), 7963-7974.
- [63] Nguyen, N. T., Tran, T. T., Wang, C. N., & Nguyen, N. T. Optimization of strategic alliances by integrating DEA and grey model. Journal of Grey System, 27(1)(2015), 38-56.
- [64] Nguyen, N.T. Performance Evaluation in Strategic Alliances: A Case of Vietnamese Construction Industry. Glob. J. Flex. Syst. Manage. 21 (2020), 85–99.
- [65] Tran, T. T. Evaluating and forecasting performance using past data of an industry: An analysis of electronic manufacturing services industry. Int. J. Adv. Appl. Sci, 3(12)(2016), 5-20.
- [66] Tran, T. T. An empirical research on selecting the targeted suppliers and purchasing process of supermarket. Int. J. Adv. Appl. Sci. 4(4)(2017), 96-109.
- [67] Tran, T. T. Forecasting strategies and analyzing the numbers of incoming students: Case in Taiwanese vocational schools. Int. J. Adv. Appl. Sci. 4(9)(2017), 86-95.
- [68] Tran, T. T. Factors affecting the purchase and repurchase intention smart-phones of Vietnamese staff. Int. J. Adv. Appl. Sci. 5(3)(2018), 107-119.
- [69] Wang, C. N., Le, T. M., Nguyen, H. K., & Ngoc-Nguyen, H. Using the Optimization Algorithm to Evaluate the Energetic Industry: A Case Study in Thailand. Processes, 7(2) (2019), 87.
- [70] Wang, C. N., Nguyen, N. T., & Tran, T. T. Integrated DEA models and grey system theory to evaluate past-to-future performance: a case of Indian electricity industry. Sci. World J. 2015 (2015), Article ID 638710.

# BUILDING ORGANIZATIONAL COMMITMENT: THE ANALYSIS OF INDICATORS

Ly Dan Thanh, International University Nhu-Ty Nguyen, International University Bui Quang Thong, International University Le Van Chon, International University

## **ABSTRACT**

The concept of organizational commitment in recent years attracts a lot of worldwide researchers so far. Apparently, it plays a vital role for both employees and employers. Thus, this paper also wants to target at how to boost organizational commitment by the main factors such as tax, banking, health service, airlines, education and business. The study applied structured questionnaire survey approach for which data were collected from fulltime Vietnamese employees and employers in Vietnamese organizations. The analyzed results demonstrate that organizational identification, intrinsic motivation and extrinsic motivation are the three main indicators building organizational commitment. Moreover, this study hopes to provide the profound ideas into organizational commitment to managerial perspective. The top managers or leaders may take into account these major factors for better organizational outcomes in both public and private sector.

**Keywords**: Commitment, Identity, Perceived Values, Motivation, Employee Roles.

## INTRODUCTION

The term of organizational commitment has become popular to scholars and practitioners over the world. There have been several experimental studies conducted to increase employee commitment to organizations. Considered as organization's assets, employees play the vital role for several rational reasons. It is believed that employees feel tightly closed to goals and values of the organization toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980). Some researchers reveal that high performance is obviously contributed by highly committed employees than less committed ones (Mowday et al., 1978; Steers, 1977). They will bring more values than those with light commitment. In order to fostering the employees' commitment, the company should be able to direct employees to its mission, create a sense of community and facilitate them to develop themselves (Dessler, 1999). In other words, people are placed first. Organizational commitment consists of three main categories which are affective commitment, continuance commitment and normative commitment. The first type is affective commitment relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017). The concept of organizational commitment has been defined and conducted in various ways. Buchanan (1974) emphasizes the role of manager's commitment because managers play an important role to maintain the organization's health and operations (Buchanan, 1974). Commitment is considered as the link between employees and their organization. It is also

1

related to valuable outcomes such as job performance, employee satisfaction and turnover (Yahaya & Ebrahim, 2016).

For contributing more empirical results, the purpose of this paper aims to propose a model of antecedents strengthening organizational commitment in the context of Vietnamese organizations in order to help leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization. The result is collected by the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at about 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. The findings show that three prominent factors positively affecting organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification.

## LITERATURE REVIEW

# **Organizational Commitment**

Previously, there was an ambiguity in the concepts of organizational commitment and organizational identification. In recent years, these terms have been discussed theoretically and tested empirically by Gautam et al. (2004). These authors strongly conclude that whereas organizational identification is self-referential or self-definitional, commitment is not and that while identification is related to perceived similarity and shared fate with the organization, commitment is formed by exchange-based factors known as the relationship between the individual and the organization (Gautam et al., 2004). Employees feel more attachment to the organizational goals and values toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980). As reviewed by Mowday et al. (1978), the concept of organizational commitment is defined as from the two main perspectives: behaviors and attitude. It is the relation between an individual's identification and involvement with the organization in which people work for. Moreover, organizational commitment can be symbolized by at least there elements "1) a strong belief in arid acceptance of the organization's goals and values; 2) a willingness to exert considerable effort on behalf of the organization; and 3) a strong desire to maintain membership in the organization" (Mowday et al., 1978; Steers, 1977) and is a process of identification (Reichers, 1985). From recent researches, according to Yousef (2017), organizational commitment is originated from 3 distinct categories. The first type is affective commitment relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017).

# **Organizational Identification**

It's quite different from organizational commitment. Organizational identification is self-definitional or self-referential (Gautam et al., 2004). The first term that needs to be explained is identification. It is the role's defining essence defined by an individual (Ashforth et al., 2008). From his study, Gautam et al. (2004) finds out that organizational identification refers to the individuals' definition of him or herself (Gautam et al., 2004) and is defined as the perception of oneness or belongingness with an organization where he or she tightly involves in and shares with its successes and failures (Mael & Ashforth, 1992). To some extent, the concept of identification is related to the three dimensions: oneness, loyalty and shared characteristics.

While oneness is the share of common goals with others in an organization, loyalty is shown in terms of attitudes and behaviors protecting the organization. Shared characteristics are what individuals and others in the organization have in common (Lee, 1971). Put it another way, organizational identification is the part of more general definition as identification with a psychological group which is perceptual rather than affective (Albert et al., 2000; Mael & Ashforth, 1992) and it stays when an individual feels proud of being a part of a group and highly appreciates the group's values and achievements without gaining them as his or her possession (O'Reilly & Chatman, 1986). Importantly, organizational identification has been criticized to help strengthen a sense of meaning, belonging and control at the workplace (Kreiner & Ashforth, 2004). So far forth as Knippenberg's conclusion, the fundamental difference between identification and commitment originated from the relationship between individual and organization is that whereas identification relates to psychological oneness, commitment shows a bond between separate psychological entities (Edwards, 2005; Van Knippenberg & Sleebos, 2006). Therefore, the authors posit:

 $H_1$  Organizational identification will positively affect organizational commitment.

Besides this, motivation also plays an essential role in forming employees' commitment with an organization.

## **Internal and External Motivation**

There have been some previous studies on motivation and its relationship with organizational commitment (Moon, 2000). Motivation term is commonly defined as a sense of achievement, recognition for high performance, responsibility and individual development and considered as a psychological process of the exchange between individual and environment (Bassett-Jones & Lloyd, 2005; Latham & Pinder, 2005). Two main drivers of motivation are intrinsic and extrinsic (Gagné et al., 2015; Moon, 2000). Whereas the former relates to the state of interest and enjoy, the latter is about doing something for instrumental reasons (Gagné et al., 2010; Katzell & Thompson, 1990). In other words, while intrinsic motivation is linked to work engagement, positive outcomes, productivity, extrinsic one is built by visible incentives (Kuvaas et al., 2017).

From another perspective known as Self-Determination theory, reveals a multidimensional definition of motivation that consists of the two main forms: autonomous and controlled motivation (Gagné et al., 2015).

However, above all, most researchers believe that the role of stimulating employees to raise their voice doesn't really relate to money and recognition. Those who have a sense of achievement or job importance are likely to have more commitment to an organization. That's the reason for most authors to confirm that intrinsic drivers dominate extrinsic rewards (Bassett-Jones & Lloyd, 2005; Kuvaas et al., 2017; Moon, 2000; Tremblay et al., 2009). This leads to the following hypotheses:

- $H_2$  Intrinsic motivation will positively affect Organizational commitment.
- $H_3$  Extrinsic motivation will positively affect Organizational commitment.

Motivation cannot be existed without receiving supports from the organization. Perceived organizational support is supposed as the leverage for stronger organizational commitment.

## **Perceived Organizational Support**

Perceived organizational support (POS) is considered as the antecedent increasing employee's attachment to the organization (Eisenberger & Huntington, 1986; Shore & Wayne, 1993). It results from organization's treatment to an employee in a wide variety of situations such as illnesses, mistakes, performance and so forth in order to make employee's job interesting and useful and meets the needs for praise and approval (Eisenberger & Huntington, 1986). Moreover, POS is considered as employees' perceptions of the organization's commitment which are relied on how the organization recognizes their contributions and support their wellbeing (Kim et al., 2016; Shore & Wayne, 1993). Eisenberger et al. (2002) believe that POS relates to meeting employees' socio-emotional needs and the readiness the organization does to appreciate increased work endeavor (Eisenberge et al., 2002). This term becomes more interesting for recent studies because it positively affects job satisfaction and organizational commitment (Jaiswal & Dhar, 2016). POS will be stronger in case the organization assures to make an employee's job effective and decrease stressful situations (Rhoades & Eisenberger, 2002). The prominent beneficial influence of POS is that it creates among employees a feeling of obligation to repay the positive treatment they received from their organization (Caesens et al., 2016; Eisenberger et al., 1990). Thus:

 $H_4$  Perceived organizational support will positively affect organizational commitment.

Moreover, in order to partly contribute to the organizational outcome, employee voice also plays an important role.

# Voice

In the organizational science, the term voice has been defined in various ways. Farndale et al. (2011) states that voice relates to employees' ability to affect the outcome of organizational decisions by giving them the chance to raise their ideas (Farndale et al., 2011). Traditionally, it is defined mostly as criticism of one's work organization but recently voice is defined as offering improvements, discussing problems in the workplace (Cosier et al., 1991). In terms of employee voice, it is originated by several purposes such as rectifying a problem with management, offering a countervailing source of control to management, contributing to improve quality and outcomes, or suggesting long-term viability for organization (Dundon et al., 2004).

In addition, based on Dyne's study, voice consists of two elements: employees' complaints or grievance at work to management and employees' participation in decision-making processes of the organization and is divided into two types: mandated voice and voluntary voice (Dyne et al., 2003). Similarly, Detert & Burris, (2007) claims that voluntary voice considered as upward voice is preferred by communicating suggestions, information or strategies to management (Detert & Burris, 2007; Morrison, 2014). Levels of employee engagement are either directly or indirectly influenced by employee perceptions of voice behavior targeting at increasing job performance (Rees et al., 2013). As the result, the authors propose:

 $H_5$  Voice will positively affect organizational commitment.

## METHODOLOGY

The data for research is based on the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. All correspondents are subordinates with various titles from middle managers to staffs. Five-point Likert scale is used to measure those factors with 32 items: totally disagree, disagree, neutral, agree, and totally agree. Before sending these handouts of the questionnaire to correspondents, the authors conduct a pilot test with two focus groups about 20 participants for the clarity and suitability of the questionnaire.

A total of 280 handouts of the questionnaire were delivered within six months in Ho Chi Minh City and other neighboring provinces in southern Vietnam. However, only 249 handouts were returned and valid. Quantitative research is conducted by non-probability sampling and obtained by using EFA, CFA analysis and Structural Equation Modeling. The questionnaire is designed as follow:

# **Organizational Commitment**

- 1. You have warm feelings toward this organization as a place to live and work.
- 2. You feel yourself to be part of the organization.
- 3. You like to feel you are making some effort, not just for yourself but for the organization as well.
- 4. You really feel as if this organization's problems are your problems.
- 5. You feel a sense of pride working for this organization.
- 6. In your work, you are willing to put in a great deal of effort beyond that normally expected. The offer of a bit more money with another employer would not seriously make you think of changing your job.

# **Employee Voice**

- 1. Leaders here at providing everyone with the chance to comment on proposed changes.
- 2. Subordinates strongly express ideas.
- 3. Leaders here at listening ideas and suggestions from subordinates.
- 4. Leaders here at responding to suggestions from employees.

## **Internal Motivation**

- 1. Doing your job well gives you the feeling that you have accomplished something worthwhile.
- 2. The things you do on your job are important to you.
- 3. You enjoy this work very much.
- 4. You have fun doing your job.

## **External Motivation**

- 1. If you produce a high quality of work output, you will lead to higher pay.
- 2. This job affords you a certain standard of living.
- 3. It allows you to make a lot of money.
- 4. Producing a low quality of work decreases your chances for promotion.

# **Perceived Organizational Support**

- 1. The organization is willing to extend itself in order to help you perform your job to the best of my ability.
- 2. Help is available from the organization when you have a problem.
- 3. The organization wishes to give you the best possible job for which you are qualified.

- 4. The organization is willing to help you when you need a special favor.
- 5. The organization would understand if you were unable to finish a task on time.
- 6. The organization really cares about my well-being.

# **Organizational Identification**

- 1. You are proud to be an employee of the organization.
- 2. You often describe yourself to others by saying "I work for this organization" or "I am from this organization".
- 3. You talk up this organization to your friends as a great company to work for.
- 4. You become irritated when you hear others outside the organization criticize your organization.
- 5. You have warm feelings toward this organization as a place to work.
- 6. You would describe your organization as a large "family" in which most members feel a sense of belonging.
- 7. You are willing to put in a great deal of effort beyond that normally expected to help this organization to be successful.

## **RESULTS & DISCUSSION**

The descriptive statistics result shows that it ranges with mean from 3.41 to. 4.0 and its standard deviations fluctuate from 0.756 to 0.976. Moreover, Cronbach's Alpha ratio is 0.966 (>0.8) with 32 items.

EFA factor analysis is the next step. It is analyzed in two phases. Phase one is for independent variables and phase two is for the dependent one.

In the first phase, five independent variables which are intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support are included in EFA factor analysis with principal components method and rotation Varimax. Specifically, KMO equals to 0.931 ( $\geq$ 0.5) and sig.001 ( $\leq$ 0.05), therefore Bartlett's Test is statistically significant.

After Rotation method Varimax with Kaiser Normalization, 25 items of independent variables are separated into four factors. Component 1 consists of eight items, however one item IM03 is eliminated because the difference of factor loadings between two factors is less than 0.3. Thus, component 1 contains seven items named Organizational identification: IO1, IO2, IO3, IO4, IO5, IO6, and IO7. Component 2 involves eight items called Employee voice: POS1, POS2, POS3, POS4, EV1, EV2, EV3, and EV4. However, POS2 and POS4 are eliminated because the difference of factor loadings between two factors is less than 0.3. Similarly; component 3 mainly includes four items grouped as extrinsic motivation: EM2, EM3, POS5, and POS6 while POS2 and POS4 are removed. Last but not least, intrinsic motivation is for component 4, mainly containing 5 items: IM01, IM02, IM04, EM01, and EM04. The rest of component 4, item IM03 is dropped because the difference of factor loadings between two factors is less than 0.3. The evaluation of Cronbach's Alpha after EFA analysis rotated for 4 factors: Organizational identification, Employee voice, extrinsic motivation and intrinsic motivation are simultaneously at 0.922; 0.887; 0.840 and 0.825 with KMO equals to 0.912; 0.866; 0.736; and 0.794, respectively. They all are accepted.

In the second phase, the dependent variable "organizational commitment" is evaluated by EFA analysis. The result is that the evaluation of Cronbach's Alpha for dependent variable "Organizational Commitment" is .916 which is accepted. Furthermore, KMO equals to 0.931 ( $\geq$ 0.5) and sig.001 ( $\leq$ 0.05) that also mean the Bartlett's Test is statistically significant and all factor loadings are more than 0.505.

## **CFA Factor Analysis**

The results of CFA are presented as follow: P=0.000; CFI=0.884; TLI=0.870; GFI=0.781; RMSEA=0.084. According to the conditions with P<0.05; CFI, TLI≥ 0.8; GFI is approximately 0.781 and RMSEA is approximately 0.08, they all meet the requirements. Considering the above conditions, the model is consistent with market data.

Based on the results, the parameters (standardized) are statistically significant (p<0.05). However, three factors IM, EM and IO have significant effects on Organizational commitment with P-value<0.05, while EV with weight of -0.034 and P-value 0.635 does not.

According to the regression weight between factors shown, while intrinsic motivation positively affects organizational commitment with weight of .364, extrinsic motivation positively affects organizational commitment with weight of .138.

It is found that empirically, three antecedents mainly affecting organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification but not employee voice. And it may be explained that whereas employee voice is mentioned in the literature of organizational commitment as the outcome of organizational decision, it is insignificant in statistics because if the voice is mandated but not voluntary, in the long run, it will diminish employee's working enthusiasm and contribution and decrease job performance (Rees et al., 2013).

However, to those three main antecedent influencing organizational commitment, it is obvious that motivation plays an important role in encouraging employees to work much better for higher performance with a sense of achievement, and take more responsibility to their job (Bassett-Jones & Lloyd, 2005; Latham & Pinder, 2005). Both intrinsic and extrinsic motivations really work well. Even though either of them has its own beneficial values, they are all linked to positive outcomes, higher productivity and even more organizational commitment. Employees tend to engage in their work and their organization (Gagné et al., 2010; Katzell & Thompson, 1990; Kuvaas et al., 2017). Apparently, when employees feel engaged, they naturally have the perception of identification. In other words, they have their loyalty and shared characteristics with their organization and its success or failure as well (Lee, 1971; Mael & Ashforth, 1992). Furthermore, they also feel proud of being a part of an organization and highly recommend the organization's values and achievement (O'Reilly & Chatman, 1986).

## **CONCLUSION**

This study concluded that theoretically, three main indicators that positively affect organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification. Moreover, this study also provides the profound ideas into organizational commitment to managerial perspective. The top managers or leaders may take into account these major factors for better organizational outcomes in both public and private sector.

Specifically, the findings will help leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization.

## RECOMMENDATIONS

In order to facilitate employees to more engage in their job and organization, based on the literature of organizational commitment, there are more factors which have the great impacts on

organizational commitment rather than just these three ones. Therefore, what we should do next is to find out more factors affecting organizational commitment besides what have been investigated in this paper.

## **REFERENCES**

- Albert, S., Ashforth, B.E., & Dutton, J.E. (2000). Organizational identity and identification: Charting new waters and building new brigdes. *Academy of Management Journal*, 25(1), 13-17.
- Ashforth, B.E., Harrison, S.H., & Corley, K.G. (2008). Identification in organizations: An examination of four fundamental questions. *Journal of Management*, *34*(3), 325-374.
- Bassett-Jones, N., & Lloyd, G.C. (2005). Does Herzberg's motivation theory have staying power?. *Journal of Management Development*, 24(10), 929-943
- Buchanan, B. (1974). Building organizational commitment: The socialization of managers in work organizations. *Administrative Science Quarterly*, 533-546.
- Caesens, G., Marique, G., Hanin, D., & Stinglhamber, F. (2016). The relationship between perceived organizational support and proactive behaviour directed towards the organization. *European Journal of Work and Organizational Psychology*, 25(3), 398-411.
- Cook, J., & Wall, T. (1980). New work attitude measures of trust, organizational commitment and personal need non-fulfilment. *Journal of Occupational Psychology*, 53(1), 39-52.
- Cosier, R.A., Dalton, D.R., & Taylor, L.A. (1991). Positive effects of cognitive conflict and employee voice. *Employee Responsibilities and Rights Journal*, 4(1), 7-11.
- Dessler, G. (1999). How to earn your employees' commitment. Academy of Management Perspectives, 13(2), 58-67.
- Detert, J.R., & Burris, E.R. (2007). Leadership behavior and employee voice: Is the door really open?. *Academy of Management Journal*, 50(4), 869-884.
- Dundon, T., Wilkinson, A., Marchington, M., & Ackers, P. (2004). The meanings and purpose of employee voice. *The International Journal of Human Resource Management*, 15(6), 1149-11
- Dyne, L.V., Ang, S., & Botero, I.C. (2003). Conceptualizing employee silence and employee voice as multidimensional constructs. *Journal of Management Studies*, 40(6), 1359-1392.
- Edwards, M.R. (2005). Organizational identification: A conceptual and operational review. *International Journal of Management Reviews*, 7(4), 207-230.
- Eisenberger, R., Fasolo, P., & Davis-LaMastro, V. (1990). Perceived organizational support and employee diligence, commitment, and innovation. *Journal of Applied Psychology*, 75(1), 51.
- Eisenberger, R., Huntington, R., Hutchison, S., & Sowa, D. (1986). Perceived organizational support. *Journal of Applied Psychology*, 71(3), 500.
- Eisenberger, R., Stinglhamber, F., Vandenberghe, C., Sucharski, I.L., & Rhoades, L. (2002). Perceived supervisor support: contributions to perceived organizational support and employee retention. *Journal of Applied Psychology*, 87(3), 565-573.
- Farndale, E., Van Ruiten, J., Kelliher, C., & Hope-Hailey, V. (2011). The influence of perceived employee voice on organizational commitment: An exchange perspective. *Human Resource Management*, 50(1), 113-129.
- Gagné, M., Forest, J., Gilbert, M.H., Aubé, C., Morin, E., & Malorni, A. (2010). The motivation at work scale: Validation evidence in two languages. *Educational and Psychological Measurement*, 70(4), 628-646.
- Gagné, M., Forest, J., Vansteenkiste, M., Crevier-Braud, L., Van den Broeck, A., Aspeli, A.K., Bellerose, J., Benabou, C., Chemolli, E., Güntert, S.T., & Halvari, H. (2015). The multidimensional work motivation scale: Validation evidence in seven languages and nine countries. *European Journal of Work and Organizational Psychology*, 24(2), 178-196.
- Gautam, T., Van Dick, R., & Wagner, U. (2004). Organizational identification and organizational commitment: Distinct aspects of two related concepts. *Asian Journal of Social Psychology*, 7(3), 301-315.
- Jaiswal, D., & Dhar, R.L. (2016). Impact of perceived organizational support, psychological empowerment and leader member exchange on commitment and its subsequent impact on service quality. *International Journal of Productivity and Performance Management*, 65(1), 58-79.
- Katzell, R.A., & Thompson, D.E. (1990). Work motivation: Theory and practice. *American Psychologist*, 45(2), 144-153.
- Kim, K.Y., Eisenberger, R., & Baik, K. (2016). Perceived organizational support and affective organizational commitment: Moderating influence of perceived organizational competence. *Journal of Organizational Behavior*, *37*(4), 558-583.

- Kreiner, G.E., & Ashforth, B.E. (2004). Evidence toward an expanded model of organizational identification. *Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior*, 25(1), 1-27.
- Kuvaas, B., Buch, R., Weibel, A., Dysvik, A., & Nerstad, C.G. (2017). Do intrinsic and extrinsic motivation relate differently to employee outcomes?. *Journal of Economic Psychology*, *61*, 244-258.
- Latham, G.P., & Pinder, C.C. (2005). Work motivation theory and research at the dawn of the twenty-first century. *Annu. Rev. Psychol.*, *56*, 485-516.
- Lee, S.M. (1971). An empirical analysis of organizational identification. *Academy of Management journal*, 14(2), 213-226.
- Mael, F., & Ashforth, B.E. (1992). Alumni and their alma mater: A partial test of the reformulated model of organizational identification. *Journal of Organizational Behavior*, 13(2), 103-123.
- Moon, M.J. (2000). Organizational commitment revisited in new public management: Motivation, organizational culture, sector, and managerial level. *Public Performance & Management Review*, 177-194.
- Morrison, E.W. (2014). Employee voice and silence. The Annual Review of Organizational Psychology and Organizational Behavior, 1(1), 173-197
- Mowday, R.T., Steers, R.M., & Porter, L.W. (1978). The measurement of organizational commitment: A progress report.
- O'Reilly, C.A., & Chatman, J. (1986). Organizational commitment and psychological attachment: The effects of compliance, identification, and internalization on prosocial behavior. *Journal of Applied Psychology*, 71(3), 492-499.
- Rees, C., Alfes, K., & Gatenby, M. (2013). Employee voice and engagement: connections and consequences. *The International Journal of Human Resource Management*, 24(14), 2780-2798.
- Reichers, A.E. (1985). A review and reconceptualization of organizational commitment. *Academy Of Management Review*, 10(3), 465-476.
- Rhoades, L., & Eisenberger, R. (2002). Perceived organizational support: a review of the literature. *Journal of Applied Psychology*, 87(4), 698-714.
- Shore, L.M., & Wayne, S.J. (1993). Commitment and employee behavior: Comparison of affective commitment and continuance commitment with perceived organizational support. *Journal of Applied Psychology*, 78(5), 774-780.
- Steers, R.M. (1977). Antecedents and outcomes of organizational commitment. *Administrative Science Quarterly*, 46-56.
- Tremblay, MA, Blanchard, CM, Taylor, S., Pelletier, LG, & Villeneuve, M. (2009). Work extrinsic and intrinsic motivation scale: Its value for organizational psychology research. *Canadian Journal of Behavioral Science*, 41 (4), 213-226.
- Van Knippenberg, D., & Sleebos, E. (2006). Organizational identification versus organizational commitment: self-definition, social exchange, and job attitudes. *Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior*, 27(5), 571-584.
- Yahaya, R., & Ebrahim, F. (2016). Leadership styles and organizational commitment: literature review. *Journal of Management Development*.
- Yousef, D.A. (2017). Organizational commitment, job satisfaction and attitudes toward organizational change: A study in the local government. *International Journal of Public Administration*, 40(1), 77-88.

Ly Dan Thanh  $^{1,2,3},\;$  Nhu-Ty Nguyen  $^{1,2\star},\;$  Bui Quang Thong  $^{1,2},\;$  Le Van Chon  $^{1,2}$ 

- 1 School of Business, International University VNU 2 Vietnam National University Ho Chi Minh City 3 Ho Chi Minh City University of Economics and Finance -
- \*Corresponding author: Nhu-Ty Nguyen, School of Business, International University VNU, Viet Nam. Email: nhutynguyen@gmail.com

Contents lists available at GrowingScience

# Management Science Letters

homepage: www.GrowingScience.com/msl

# A model of antecedents strengthening organizational commitment

Dan Thanh Ly<sup>a,b,c</sup>, Quang Thong Bui<sup>a,b</sup>, Van Chon Le<sup>a,b</sup> and Nhu Ty Nguyen<sup>a,b\*</sup>

<sup>a</sup>School of Business, International University (IU), Vietnam

<sup>c</sup>Ho Chi Minh City University of Economics and Finance (UEF), Vietnam

#### CHRONICLE

#### ABSTRACT

Article history:
Received: October 14, 2020
Received in revised format:
November 11 2020
Accepted: November 11, 2020
Available online:
November 11, 2020

Keywords:
Organizational commitment
Intrinsic motivation
Extrinsic motivation
Employee voice
Organizational identification
Perceived organizational commitment

Due mainly to the importance of organizational commitment for both employees and employers, it has been the subject attracting researchers over the last few decades. Therefore, the paper aims to build a model of antecedents strengthening organizational commitment. First, the paper reviews six main concepts including organizational commitment, intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support. Next, Five-point Likert scale is used to measure those factors with two hundred and forty-nine fulltime Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. Finally, quantitative research is obtained by using EFA, CFA analysis and structural equation modeling. The findings show that three prominent factors positively affecting organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification.

© 2021 by the authors; licensee Growing Science, Canada

## 1. Introduction

The concept of organizational commitment has received increased attention from scholars and practitioners over the world. They have researched and conducted several social experiments to increase employee commitment to organizations (Moon, 2000; Steers, 1977). Employees are considered as organization's assets; therefore, they play the central role for several reasons, Buchanan (1974) and Wall (1980) confirm that employees feel tightly closed to goals and values of the organization toward organizational commitment. Previous researches also reveal that high performance is surely fulfilled by highly committed employees than less committed ones (Mowday, Steers, & Porter, 1978; Steers, 1977). Put it another way, according to Yousef et. al (2017), organizational commitment consists of three main categories. The first type is affective commitment relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017). In fact, organizational commitment has been defined and conducted in a variety of research perspectives and methods. For contributing more empirical results, the purpose of this paper aims to propose a model of antecedents strengthening organizational commitment in the context of Vietnamese organizations in order to help leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization. The result is collected by the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at about 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. To begin with, the paper reviews six main concepts including organizational commitment, intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support. Next, Five-point Likert scale is used to measure those factors with two hundred and forty-nine fulltime \* Corresponding author.

E-mail address: nhutynguyen@gmail.com nhutynguyen@hcmiu.edu.vn (N.T. Nguyen)

<sup>&</sup>lt;sup>b</sup>Vietnam National University, HCM City, Vietnam

Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. Finally, quantitative research is obtained by using EFA, CFA analysis and Structural equation modeling. The findings show that four prominent factors positively affecting organizational commitment are intrinsic motivation, extrinsic motivation, employee voice and organizational identification.

#### 2. Literature review

#### 2.1 Organizational commitment

Previously, there was an ambiguity in the concepts of organizational commitment and organizational identification. In recent years, these terms have been discussed theoretically and tested empirically by Gautam et.al (2004). These authors strongly conclude that whereas organizational identification is self-referential or self-definitional, commitment is not and that while identification is related to perceived similarity and shared fate with the organization, commitment is formed by exchangebased factors known as the relationship between the individual and the organization (Gautam, Dick, & Wagner, 2004). Employees feel more attachment to the organizational goals and values toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980). As reviewed by Mowday et al. (1978), the concept of organizational commitment is defined as from the two main perspectives: behaviors and attitude. It is the relation between an individual's identification and involvement with the organization in which people work for. Moreover, organizational commitment can be symbolized by at least there elements "1) a strong belief in arid acceptance of the organization's goals and values; 2) a willingness to exert considerable effort on behalf of the organization; and 3) a strong desire to maintain membership in the organization" (Mowday et al., 1978; Steers, 1977) and is a process of identification (Reichers, 1985). From recent researches, according to Yousef et al. (2017), organizational commitment is originated from 3 distinct categories. The first type is affective commitment relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017).

## 2.2 Organizational Identification

It's quite different from organizational commitment. Organizational identification is self-definitional or self-referential (Gautam, Dick, & Wagner, 2004). The first term that needs to be explained is identification. It is the role's defining essence defined by an individual (Ashforth, Harrison, & Corley, 2008). From his study, Gautam (2004) finds out that organizational identification refers to the individuals' definition of him or herself (Gautam et al., 2004) and is defined as the perception of oneness or belongingness with an organization where he or she tightly involves in and shares with its successes and failures (Mael & Ashforth, 1992). To some extent, the concept of identification is related to three dimensions: oneness, loyalty and shared characteristics. While oneness is the share of common goals with others in an organization, loyalty is shown in terms of attitudes and behaviors protecting the organization. Shared characteristics are what individuals and others in the organization have in common (Lee, 1970). Put it another way, organizational identification is the part of more general definition as identification with a psychological group which is perceptual rather than affective (Albert, Ashforth, & Dutton, 2000; Mael & Ashforth, 1992) and it stays when an individual feels proud of being a part of a group and highly appreciates the group's values and achievements without gaining them as his or her possession (Charles O'Reilly & Chatman, 1986). Importantly, organizational identification has been criticized to help strengthen a sense of meaning, belonging and control at the workplace (Kreiner & Ashforth, 2004). So far forth as Knippenberg's conclusion, the fundamental difference between identification and commitment originated from the relationship between individual and organization is that whereas identification relates to psychological oneness, commitment shows a bond between separate psychological entities (Edwards, 2005; Knippenberg & Sleebos, 2006). Therefore, the authors posit:

H<sub>1</sub>: Organizational identification will positively affect Organizational commitment.

Besides this, motivation also plays an essential role in forming employees' commitment with an organization.

## 2.3 Internal and External Motivation

There have been some previous studies on motivation and its relationship with organizational commitment (M..J. Moon, 2000). Motivation term is commonly defined as a sense of achievement, recognition for high performance, responsibility and individual development and considered as a psychological process of the exchange between individual and environment (Jones & Lloyd, 2005; Latham & Pinder, 2005). Two main drivers of motivation are intrinsic and extrinsic (Gagne et al., 2010; Kuvass, Buch, Weibel, Dysvik, & Nerstad, 2017; Moon, 2000). Whereas the former relates to the state of interest and enjoy, the latter is about doing something for instrumental reasons (Gagne et al., 2010; Katzell & Thompson, 1990). In other words, while intrinsic motivation is linked to work engagement, positive outcomes, productivity, extrinsic one is built by visible incentives (Kuvass et al., 2017). From another perspective known as Self-Determination theory, Garne (2015) reveals a multidimensional definition of motivation that consists of the two main forms: autonomous and controlled motivation. The author prefers autonomous, because while autonomous motivation is about individuals' optimal functioning such as well-being, performance etc., controlled one is less beneficial (Gagne, Forest, & Vansteenkiste, 2015). However, above all, most researchers believe that the role of stimulating employees to raise their voice doesn't really relate to money and recognition.

Those who have a sense of achievement or job importance are likely to have more commitment to an organization. That's the reason for most authors to confirm that intrinsic drivers dominate extrinsic rewards (Jones & Lloyd, 2005; Kuvass et al., 2017; Moon, 2000; Tremblay, Blanchard, Taylor, Pelletier, & Villeneuve, 2009). This leads to the following hypotheses:

H<sub>2</sub>: Intrinsic motivation will positively affect Organizational commitment.

H<sub>3</sub>: Extrinsic motivation will positively affect Organizational commitment.

Motivation cannot be existed without receiving supports from the organization. Perceived organizational support is supposed as the leverage for stronger organizational commitment.

#### 2.4 Perceived Organizational Support

Perceived organizational support (POS) is considered as the antecedent increasing employee's attachment to the organization (Eisenberger & Huntington, 1986; Shore & Wayne, 1993). It results from organization's treatment to an employee in a wide variety of situations such as illnesses, mistakes, performance and so forth in order to make employee's job interesting and useful and meets the needs for praise and approval (Eisenberger & Huntington, 1986). Moreover, POS is considered as employees' perceptions of the organization's commitment which are relied on how the organization recognizes their contributions and support their well-being (Kim, Eisenberger, & Baik, 2016; Shore & Wayne, 1993). Having the same perspective, Eisenberger et. al believe that POS relates to meeting employees' socio-emotional needs and the readiness the organization does to appreciate increased work endeavor (Eisenberger et al., 2002). This term becomes more interesting for recent studies because it positively affects job satisfaction and organizational commitment (Jaiswal & Dhar, 2016). POS will be stronger in case the organization assures to make an employee's job effective and decrease stressful situations (Rhoades & Eisenberger, 2002). The prominent beneficial influence of POS is that it creates among employees a feeling of obligation to repay the positive treatment they received from their organization (Caesens et al., 2015; Eisenberger et al., 1990). Thus:

H<sub>4</sub>: Perceived organizational support will positively affect Organizational commitment.

Moreover, in order to partly contribute to the organizational outcome, employee voice also plays an important role.

#### 2.5 Voice

In the organizational science, the term voice has been defined in various ways. Farndale (2011) states that voice relates to employees' ability to affect the outcome of organizational decisions by giving them the chance to raise their ideas (Farndale, Rruiten, clare Kelliher, & Hailey, 2011). Traditionally, it is defined mostly as criticism of one's work organization but recently voice is defined as offering improvements, discussing problems in the workplace (Cosier, Dalton, & Taylor, 1991). In terms of employee voice, it is originated by several purposes such as rectifying a problem with management, offering a countervailing source of control to management, contributing to improve quality and outcomes, or suggesting long-term viability for organization(Tony, Adrian, Mick, & Peter, 2004). In addition, based on Dyne's study, voice consists of two elements: employees' complaints or grievance at work to management and employees' participation in decision-making processes of the organization and is divided into two types: mandated voice and voluntary voice (Linn Van Dyne, Ang, & Botero, 2003). Similarly, Detert (2007) claims that voluntary voice considered as upward voice is preferred by communicating suggestions, information or strategies to management (Detert & Burris, 2007; Morrison, 2014). Levels of employee engagement are either directly or indirectly influenced by employee perceptions of voice behavior targeting at increasing job performance (Rees, Alfes, & Gatenby, 2013a). As the result, the authors propose:

H<sub>5</sub>: Voice will positively affect Organizational commitment.

#### 3. Method and results

# 3.1 Data Collection

The data for research is based on the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. All correspondents are subordinates with various titles from middle managers to staffs. The questionnaire was contained six constructs including organizational commitment, intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support and distributed as hard copies that required handwritten responses. Five-point Likert scale is used to measure those factors with 32 items: totally disagree, disagree, neutral, agree, totally agree. A total of 280handouts of the questionnaire were delivered within six months in Hochiminh City and other neighboring provinces in southern Vietnam. However, only 249 handouts were returned and valid. Quantitative research is conducted by non-probability sampling and obtained by using EFA, CFA analysis and Structural Equation Modeling.

## 3.2 Data analysis and Results

To ensure the items in the questionnaire to be valid and reliable, the questionnaire is surveyed by two hundred and forty nine participants. The descriptive statistics result shows that it ranges with mean from 3.41 to. 4.0 and its standard deviations fluctuate from 0.756 to 0.976. Moreover, Cronbach's Alpha ratio is 0.966 (>0.8) with 32 items (see Table 1).

**Table 1** Descriptive statistics

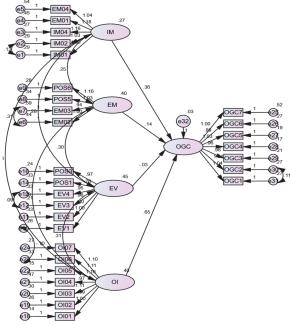
|                                                                                                                                  | N   | min | max    | Mean | Std. Dev. |
|----------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------|------|-----------|
| OGC1. You have warm feelings toward this organization as a place to live and work.                                               | 249 | 1   | 5      | 3.74 | .856      |
| OGC2. You feel yourself to be part of the organization.                                                                          | 249 | 1   | 5      | 3.68 | .857      |
| OGC3. You like to feel you are making some effort, not just for yourself but for the organization as well.                       | 249 | 1   | 5      | 3.90 | .792      |
| OGC4.You really feel as if this organization's problems are your problems.                                                       | 249 | 1   | 5      | 3.96 | .756      |
| OGC5. You feel a sense of pride working for this organization.                                                                   | 249 | 1   | 5      | 3.85 | .804      |
| OGC6.In your work, you are willing to put in a great deal of effort beyond that normally expected.                               | 249 | 1   | 5      | 3.82 | .778      |
| OGC7. The offer of a bit more money with another employer would not seriously make you think of changing                         | 249 | 1   | 5      | 3.41 | .976      |
| your job. EV1.Leaders here at providing everyone with the chance to comment on proposed changes.                                 | 249 | 1   | -      | 4.00 | .833      |
|                                                                                                                                  | 249 | 1   | 5      | 4.00 | .833      |
| EV2.Subordinates strongly express ideas.                                                                                         |     | 1   | -      |      |           |
| EV3.Leaders here at listening ideas and suggestions from subordinates.                                                           | 249 | 1   | 5      | 3.96 | .805      |
| EV4.Leaders here at responding to suggestions from employees.                                                                    | 249 | 1   | 5      | 4.00 | .854      |
| IM01.Doing your job well gives you the feeling that you have accomplished something worthwhile.                                  | 249 | 1   | 5<br>5 | 3.96 | .750      |
| IM02. The things you do on your job are important to you.                                                                        | 249 |     | -      | 3.93 | .762      |
| IM03. You enjoy this work very much.                                                                                             | 249 | 1   | 5      | 3.87 | .769      |
| IM04. You have fun doing your job.                                                                                               | 249 |     | 5      | 3.82 | .797      |
| EM01.If you produce a high quality of work output, you will lead to higher pay.                                                  | 249 | 1   | 5      | 3.73 | .909      |
| EM02. This job affords you a certain standard of living.                                                                         | 249 | 1   | 5      | 3.57 | .918      |
| EM03.It allows you to make a lot of money.                                                                                       | 249 | 1   | 5      | 3.28 | .976      |
| EM04.Producing a low quality of work decreases your chances for promotion.                                                       | 249 | 1   | 5      | 3.71 | .911      |
| POS1. The organization is willing to extend itself in order to help you perform your job to the best of my ability.              | 249 | 1   | 5      | 3.79 | .770      |
| POS2.Help is available from the organization when you have a problem.                                                            | 249 | 1   | 5      | 3.75 | .791      |
| POS3. The organization wishes to give you the best possible job for which you are qualified.                                     | 249 | 1   | 5      | 3.77 | .813      |
| POS4. The organization is willing to help you when you need a special favor.                                                     | 249 | 1   | 5      | 3.78 | .775      |
| POS5. The organization would understand if you were unable to finish a task on time.                                             | 249 | 1   | 5      | 3.45 | .879      |
| POS6.The organization really cares about my well-being.                                                                          | 249 | 1   | 5      | 3.49 | .907      |
| OI01. You are proud to be an employee of the organization.                                                                       | 249 | 1   | 5      | 3.81 | .737      |
| OI02. You often describe yourself to others by saying 'I work for this organization,' or 'I am from this organization.'          | 249 | 1   | 5      | 3.84 | .812      |
| OI03. You talk up this organization to your friends as a great company to work for.                                              | 249 | 1   | 5      | 3.60 | .888      |
| OI04. You become irritated when you hear others outside the organization criticize your organization                             | 249 | 1   | 5      | 3.62 | .922      |
| OI05.You have warm feelings toward this organization as a place to work.                                                         | 249 | 1   | 5      | 3.82 | .833      |
| OI06.You would describe your organization as a large 'family' in which most members feel a sense of belong-                      | 249 | 1   | 5      | 3.71 | .905      |
| ing.                                                                                                                             |     |     |        |      |           |
| OI07. You are willing to put in a great deal of effort beyond that normally expected to help this organization to be successful. | 249 | 1   | 5      | 3.99 | .868      |
| Valid N (listwise)                                                                                                               | 249 |     |        |      |           |

EFA factor analysis is the next step. It is analyzed in two phases. Phase one is for independent variables, and phase two is for the dependent one. In the first phase, five independent variables which are intrinsic motivation, extrinsic motivation, employee voice, organizational identification and perceived organizational support are included in EFA factor analysis with principal components method and rotation Varimax. Specifically, KMO equals to 0.931 (≥0.5) and sig.001 (≤0.05), therefore Bartlett's Test is statistically significant (see Table 2).

**Table 2** KMO and Bartlett's Test

| TENTO una Bartiett 5 Test                        |                    |          |
|--------------------------------------------------|--------------------|----------|
| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |                    | .931     |
| Bartlett's Test of Sphericity                    | Approx. Chi-Square | 4583.813 |
|                                                  | df                 | 300      |
|                                                  | Sig.               | .000     |

After Rotation method Varimax with Kaiser Normalization, 25 items of independent variables are separated into four factors. Component 1 consists of eight items, however one item IM03 is eliminated because the difference of factor loadings between two factors is less than 0.3. Thus, component 1 contains seven items named Organizational identification: IO1, IO2, IO3, IO4, IO5, IO6, IO7. Component 2 involves eight items called Employee voice: POS1, POS2, POS3, POS4, EV1, EV2, EV3, EV4. However, POS2 and POS4 are eliminated because the difference of factor loadings between two factors is less than 0.3. Similarly, component 3 mainly includes four items grouped as Extrinsic motivation: EM2, EM3, POS5, POS6 while POS2 and POS4 are removed. Last but not least, Intrinsic motivation is for component 4, mainly containing 5 items: IM01, IM02, IM04, EM01, EM04. The rest of component 4, item IM03 is dropped because the difference of factor loadings between two factors is less than 0.3. The evaluation of Cronbach's Alpha after EFA analysis rotatedfor4 factors: Organizational identification, Employee voice, Extrinsic motivation and Intrinsic motivation are simultaneously equal to .922, .887, .840 and .825 with KMO of 0.912, 0.866, 0.736 and 0.794, respectively. They all are accepted. (see Table 3). In the second phase, the dependent variable "organizational Commitment" is evaluated by EFA analysis. The result is that the evaluation of Cronbach's Alpha for dependent variable "Organizational Commitment" is .916 which is accepted. Furthermore, KMO equals to 0.931 (≥0.5) and sig.001 (≤0.05) that also mean the Bartlett's Test is statistically significant and all factor loadings are more than 0.505. (see Table 4).


**Table 3** EFA Result – Rotated Component Matrix

|                |        | Component |        |        |  |  |
|----------------|--------|-----------|--------|--------|--|--|
|                | 1      | 2         | 3      | 4      |  |  |
| EV1            |        | .740      |        |        |  |  |
| EV2            |        | .684      |        |        |  |  |
| EV3            |        | .773      |        |        |  |  |
| EV4            |        | .742      |        |        |  |  |
| POS1           |        | .505      |        |        |  |  |
| POS2           |        | .531      | .546   |        |  |  |
| POS3           |        | .684      |        |        |  |  |
| POS4           |        | .610      | .555   |        |  |  |
| POS5           |        |           | .624   |        |  |  |
| POS6           |        |           | .583   |        |  |  |
| IM01           |        |           |        | .594   |  |  |
| IM02           |        |           |        | .674   |  |  |
| IM03           | .522   |           |        | .503   |  |  |
| IM04           |        |           |        | .560   |  |  |
| EM01           |        |           |        | .549   |  |  |
| EM02           |        |           | .742   |        |  |  |
| EM03           |        |           | .850   |        |  |  |
| EM04           |        |           |        | .571   |  |  |
| OI01           | .735   |           |        |        |  |  |
| OI02           | .642   |           |        |        |  |  |
| OI03           | .768   |           |        |        |  |  |
| OI04           | .693   |           |        |        |  |  |
| OI05           | .798   |           |        |        |  |  |
| OI06           | .712   |           |        |        |  |  |
| OI07           | .638   |           |        |        |  |  |
| Eigenvalue     | 4.790  | 3.839     | 2.704  | 2.949  |  |  |
| Cumulative     | 68.422 | 63.987    | 67.600 | 58.976 |  |  |
| Cronbach Alpha | 0.922  | 0.887     | 0.840  | 0.825  |  |  |

Table 4 KMO and Bartlett's Test

| TENTO WING DURING TOO             |                    |          |
|-----------------------------------|--------------------|----------|
| Kaiser-Meyer-Olkin Measure of Sam | pling Adequacy.    | .931     |
| Bartlett's Test of Sphericity     | Approx. Chi-Square | 4599.510 |
|                                   | df                 | 300      |
|                                   | Sig.               | .000     |

# CFA Factor Analysis



**Fig. 1.** Results of CFA concepts of research model (standardized) P=.000; CFI=.884; TLI=.870; GFI=.781; RMSEA=.084.

**Table 6**Regression Weights

| regression |   |     | Estimate | S.E. | C.R.   | P    | Label |
|------------|---|-----|----------|------|--------|------|-------|
| OGC        | ← | IM  | .364     | .155 | 2.350  | .019 |       |
| OGC        | ← | EM  | .138     | .067 | 2.051  | .040 |       |
| OGC        | ← | EV  | 034      | .071 | 475    | .635 |       |
| OGC        | ← | OI  | .649     | .099 | 6.584  | ***  |       |
| IM01       | ← | IM  | 1.000    |      |        |      |       |
| IM02       | ← | IM  | 1.033    | .077 | 13.443 | ***  |       |
| IM04       | ← | IM  | 1.162    | .108 | 10.719 | ***  |       |
| EM01       | ← | IM  | 1.178    | .122 | 9.631  | ***  |       |
| EM04       | ← | IM  | 1.040    | .121 | 8.561  | ***  |       |
| EM02       | ← | EM  | 1.000    |      |        |      |       |
| EM03       | ← | EM  | .944     | .071 | 13.303 | ***  |       |
| POS5       | ← | EM  | 1.033    | .103 | 10.018 | ***  |       |
| POS6       | ← | EM  | 1.163    | .109 | 10.637 | ***  |       |
| EV1        | ← | EV  | 1.000    |      |        |      |       |
| EV2        | ← | EV  | .796     | .071 | 11.217 | ***  |       |
| EV3        | ← | EV  | .981     | .070 | 14.045 | ***  |       |
| EV4        | ← | EV  | .945     | .077 | 12.359 | ***  |       |
| POS1       | ← | EV  | .758     | .070 | 10.815 | ***  |       |
| POS3       | ← | EV  | .967     | .071 | 13.667 | ***  |       |
| OI01       | ← | OI  | 1.000    |      |        |      |       |
| OI02       | ← | OI  | .994     | .066 | 15.104 | ***  |       |
| OI03       | ← | OI  | 1.105    | .071 | 15.525 | ***  |       |
| OI04       | ← | OI  | .971     | .080 | 12.083 | ***  |       |
| OI05       | ← | OI  | 1.164    | .061 | 19.072 | ***  |       |
| OI06       | ← | OI  | 1.112    | .073 | 15.274 | ***  |       |
| OI07       | ← | OI  | 1.101    | .069 | 16.019 | ***  |       |
| OGC7       | ← | OGC | 1.000    |      |        |      |       |
| OGC6       | ← | OGC | .887     | .082 | 10.832 | ***  |       |
| OGC5       | ← | OGC | 1.031    | .086 | 12.016 | ***  |       |
| OGC4       | ← | OGC | .960     | .081 | 11.912 | ***  |       |
| OGC3       | ← | OGC | .981     | .084 | 11.657 | ***  |       |
| OGC2       | ← | OGC | 1.038    | .091 | 11.420 | ***  |       |
| OGC1       | ← | OGC | 1.038    | .091 | 11.436 | ***  |       |

The results of CFA factor analysis of the research model are presented in Fig. 1. They are presented as follow: P=.000; CFI = .884; TLI = .870; GFI = .781; RMSEA = .084. According to the conditions with P < 0.05; CFI, TLI≥ 0.8; GFI is approximately equal to 0.781 and RMSEA is approximately equal to 0.08 and they both meet the requirements. Considering the above conditions, the model is consistent with market data. Based on the results in Table 6, the parameters (standardized) are statistically significant (p<0.05). However, three factors IM, EM and IO have significant effects on Organizational commitment with P-value < 0.05, while EV with weight of -.034 and P-value 0.635 does not. According to the regression weight between factors shown, while intrinsic motivation positively affects organizational commitment with weight of .364,extrinsic motivation positively affects organizational commitment with weight of .138. Specifically, when intrinsic motivation goes up by 1 standard deviation, organizational commitment goes up by 0.138 standard deviation. Similarly, with weight of .649, organizational identification has a positive effect on organizational commitment. Clearly, whenever organizational identification goes up by 1 standard deviation, organizational commitment goes up by 0.649 standard deviation. (see Table 6).

#### 4. Discussion

It is found that empirically, three antecedents mainly affecting organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification but not employee voice. It may be explained that whereas employee voice is mentioned in the literature of organizational commitment as the outcome of organizational decision, it is insignificant in statistics because if the voice is mandated but not voluntary, in the long run, it will diminish employee's working enthusiasm and contribution and decrease job performance (Rees, Alfes, & Gatenby, 2013b). However, to those three main antecedent influencing organizational commitment, it is obvious that motivation plays an important role in encouraging employees to work much better for higher performance with a sense of achievement, and take more responsibility to their job (Jones & Lloyd, 2005; Latham & Pinder, 2005). Both intrinsic and extrinsic motivations really work well. Even though either of them has its own beneficial values, they are all linked to positive outcomes, higher productivity and even more organizational commitment. Employees tend to engage in their work and their organization (Gagne et al., 2010; Katzell & Thompson, 1990; Kuvass et al., 2017). Apparently, when employees feel engaged, they naturally have the perception of identification. In other words, they have their loyalty and shared characteristics with their organization and its success or failure as well (Lee, 1970;

Mael & Ashforth, 1992). Furthermore, they also feel proud of being a part of an organization and highly recommend the organization's values and achievement (Charles O'Reilly & Chatman, 1986).

#### 5. Implications and discussion

#### 5.1 Implications

For future research, in order to facilitate employees to more engage in their job and organization, based on the literature of organizational commitment, there are more factors which have the great impacts on organizational commitment rather than just these three ones. Therefore, what we should do next is to find out more factors affecting organizational commitment besides what have been investigated in this paper.

#### 6. Conclusion

Recent years have witnessed a special interest in the concept of organizational commitment since it will bring several beneficial results to organizations. The term organizational commitment has been variably defined, measured, and researched. However, it has yet researched fully in the Vietnamese context. With the survey of 34 organizations from a variety of sectors such as tax, banking, health service, airlines, education and business, the findings show that empirically, three main antecedents that positively affect organizational commitment are intrinsic motivation, extrinsic motivation and organizational identification. The model of antecedents strengthening organizational commitment will help leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization.

#### References

- Albert, S., Ashforth, B. E., & Dutton, J. E. (2000). Organizational identity and identification: Charting new waters and building new brigdes. *Academy of Management Journal*, 25(1), 13-17.
- Ashforth, B. E., Harrison, S. H., & Corley, K. G. (2008). Identification in Organizations: An Examination of Four Fundamental Questions. *Journal of Management*, 34(3). doi:10.1177/0149206308316059
- Buchanan, B. (1974). Building Organizational Commitment: The Socialization of Managers in Work Organizations *Administrative Science Quarterly*, 4, 533-546.
- Caesens, G., Marique, G., Hanin, D., & Stinglhamber, F. (2015). The relationship between perceived organizational support and proactive behaviour directed towards the organization. *European Journal of Work and Organizational Psychology*.
- Charles O'Reilly, C., & Chatman, J. (1986). Organizational Commitment and Psychological Attachment: The Effects of Compliance, Identification, and Internalization on Prosocial Behavior. *Journal of Applied Psychology*, 71(3), 492-499.
- Cook, J., & Wall, T. (1980). New work attitude measures of trust, organizational commitment and personal need non-fulfilment. *Journal of Occupational Psychology*, 53, 39-52.
- Cosier, R. A., Dalton, D. R., & Taylor, L. A. (1991). Positive effects of cognitive conflict and employee voice. *Employee Responsibilities and Rights Journal*, 4(1).
- Detert, J. R., & Burris, E. R. (2007). Leadership behavior and employee voice-Is the door really open. *Academy of Management Journal*, 50(4), 869–884.
- Edwards, M. R. (2005). Organizational identification: A conceptual and operational review. *International Journal of Management Reviews*, 7(4), 207–230
- Eisenberger, R., Fasolo, P., & LaMastro, V. D. (1990). Perceived organizational support and employee diligence, commitment, and innovation. *Journal of Applied Psychology*, 75(1), 51-59.
- Eisenberger, R., & Huntington, R. (1986). Perceived organizational support. Journal of Applied Psychology, 51(3).
- Eisenberger, R., Stinglhamber, F., Vandenberghe, C., Sucharski, I. L., & Rhoades, L. (2002). Perceived supervisor support: contributions to perceived organizational support and employee retention. *Journal of Applied Psychology*, 87(3), 565-573.
- Farndale, E., Rruiten, J. V., clare Kelliher, C., & Hailey, V. H. (2011). The inflluence of perceived employee voice on organizational commitment, an exchange perspective. *Human Resource Management*, 50(1), 113 129.
- Gagne, M., Forest, J., M.H., M.-H. G., & Aube, C. (2010). The motivation at work scale: Validation evidence in two languages. *Educational and Psychological Measurement*, 70(4), 628 –646
- Gagne, M., Forest, J., & Vansteenkiste, M. (2015). The multidimensional work motivation scale: Validation evidence in seven languages and nine countries. *European Journal of Work and Organizational Psychology*, 24(2), 178–196.
- Gautam, T., Dick, R. V., & Wagner, U. (2004a). Organizational identification and organizational commitment: Distinct aspects of two related concepts. *Asian Journal of Social Psychology*, 7, 301–315.
- Jaiswal, D., & Dhar, R. L. (2016). Impact of perceived organizational support, psychological empowerment and leader member exchange on commitment and its subsequent impact on service quality. *International Journal of Productivity and Performance Management*, 65(1), 58-79.
- Jones, N. B., & Lloyd, G. C. (2005). Does Herzberg's motivation theory have staying power?. *Journal of Management Development*, 24(10), 929-943
- Katzell, R. A., & Thompson, D. E. (1990). Work motivation theory and practice. American Psychologist, 45(2), 144-153.

- Kim, K. Y., Eisenberger, R., & Baik, K. (2016). Perceived organizational support and affective organizational commitment: Moderating influence of perceived organizational competence. *Journal of Organizational Behavior*, 37, 558–583. doi:10.1002/job.2081
- Knippenberg, D. V., & Sleebos, A. E. (2006). Organizational identification versus organizational commitment: Self-definition, social exchange, and job attitudes. *Journal of Organizational Behavior*, 27(571-584
- Kreiner, G. E., & Ashforth, B. E. (2004). Evidence toward an expanded model of organizational identification. *Journal of Organizational Behavior*, 25, 1–27. doi:10.1002/job.234
- Kuvass, B., Buch, R., Weibel, A., Dysvik, A., & Nerstad, C. G. L. (2017). Do intrinsic and extrinsic motivation relate differently to employee outcomes? *Journal of Economic Psychology*, 61, 244-258.
- Latham, G. P., & Pinder, C. C. (2005). Work motivation theory and research at the dawn of the twenty-first century. *Annual Review of Psychology*, 56, 485–516.
- Lee, S. M. (1970). An empirical analysis of organizational identification. *Academy of Management Journal*, 14(2), 213-226. Linn Van Dyne, L. V., Ang, S., & Botero, I. C. (2003). Conceptualizing employee silence and employee voice as multitimensional constructs. *Journal of Management Studies*, 40(6).
- Mael, F., & Ashforth, B. E. (1992). Alumni and their alma mater: A partial test of the reformulated model of organizational identification. *Journal of Organizational Behavior*, 13, 103-123
- Moon, M. J. (2000). Organizational commitment revisited in new public management: Motivation, organizational culture, sector, and managerial level. *Public Performance & Management Review*, 24(2), 177-194.
- Morrison, E. W. (2014). Employee voice and silence. *The Annual Review of Organizational Psychology and Organizational Behavior*, 1, 173-197.
- Mowday, R. T., Steers, R. M., & Porter, L. W. (1978). The measurement of organizational commitment: A progress report. *Technical report*.
- Rees, C., Alfes, K., & Gatenby, M. (2013a). Employee voice and engagement: connections and consequences. *The International Journal of Human Resource Management*, 24(14), 2780–2798, .
- Rees, C., Alfes, K., & Gatenby, M. (2013b). Employee voice and engagement: connections and consequences. *The International Journal of Human Resource Management*, 14, 2780–2798.
- Reichers, A. E. (1985). A review and reconceptualization of organizational commitment. *The Academy of Management Review*, 10(3), 465-476.
- Rhoades, L., & Eisenberger, R. (2002). Perceived organizational support: A review of the literature. *Journal of Applied Psychology*, 87(4), 698-714.
- Shore, L. M., & Wayne, S. J. (1993). Commitment and employee behavior: Comparison of affective commitment and continuance commitment with perceived organizational support. *Journal of Applied Psychology*, 78(5), 774-780.
- Steers, R. M. (1977). Antecedents and outcomes of organizational commitment *Administrative Science Quarterly*, 22(1), 46-56
- Tony, D., Adrian, W., Mick, M., & Peter, A. (2004). The meanings and purpose of employee voice. *International Journal of Human Resource Management*, 15(6), 1150-1171.
- Tremblay, M. A., Blanchard, C. M., Taylor, S., Pelletier, L. G., & Villeneuve, M. (2009). Work extrinsic and intrinsic motivation scale: Its value for organizational psychology research. *Canadian Journal of Behavioural Science*, 4, 213–226. doi:10.1037/a0015167
- Yousef, D. A. (2017). Organizational commitment, job satisfaction and attitudes toward organizational change: A study in the local government *International Journal of Public Administration*, 40(1), 77-88.



© 2021 by the authors; licensee Growing Science, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).



## HO CHI MINH CITY UNIVERSITY OF ECONOMICS AND FINANCE

## THE FIRST INTERNATIONAL CONFERENCE ON SCIENCE, ECONOMICS AND SOCIETY STUDIES UEF 2020

### **CORPORATION AND GLOBAL INTEGRATION**





#### **TABLE OF CONTENTS**

| INTERNATIONAL RELATIONS                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implementing Of Education For Sustainable Development (ESD) In University Teaching: The Case Of Ho Chi Minh City University Of Economics And Finance |
| Tran Thanh Huyen                                                                                                                                     |
| Evaluate The Role Of National Government In The Multistakeholder Model Of Internet Governance  Le Ngoc Thao Nguyen                                   |
|                                                                                                                                                      |
| Effects Of Hydropower Development In Mekong River's Mainstream On Vietnam's Food Security  Le Phuong Cat Nhi                                         |
| The Role Of The Vietnam People's Navy In Contemporary Regional Security Dynamics                                                                     |
| Nguyen The Phuong27                                                                                                                                  |
| The Role Of Asean And Japan To Maintain Legal Stability In The East Sea                                                                              |
| Banh Quoc Tuan                                                                                                                                       |
| The Current Situation Of International Labor Cooperation And Its Impacts On Vietnam: The Case Of Technical Intern Training Program In Japan          |
| Huynh Ho Dai Nghia43                                                                                                                                 |
| Challenges Of Illegal Immigration And Human Trafficking In The Context Of Globalization                                                              |
| Tran My Hai Loc51                                                                                                                                    |
| Belt - Road Initiative (Bri) And Free And Open Indo-Pacific (FOIP) Under The View Of Power Transition Theory In International Relations              |
| Nguyen Dang Khoa, Tran Thanh Thanh, Tran Hong Quyen61                                                                                                |
| Reluctant Partnership: Thailand's Diplomacy In The Changing Regional Order                                                                           |
| Narut CHAROENSRI71                                                                                                                                   |
| ECONOMICS: INTERNAL ENVIRONMENT                                                                                                                      |
| The Role Of Human Resources For Economic Growth Model Innovation In Ho Chi Minh City: Issues And Solutions                                           |
| Nguyen Minh Tri, Nguyen Mai Lam 81                                                                                                                   |
| Mediating Role Of Relationship In The Contruction Industry Towards Vietnamese Contractor Selection                                                   |
| Pham Van Kien, Bui Minh Ha, Le Duy Minh89                                                                                                            |
| Understanding Business Relationships Through A Psychological Perspective                                                                             |
| Maxime Vigier                                                                                                                                        |
| Examine The Impact Of Leader's Emotional Competence On Job Satisfaction In Vietnamese Private Company: Fsqca Approach                                |
| Pham Van Kien, Le Thanh Duyen, Dinh Thien Phuc109                                                                                                    |
| Key Antecedences Of Green Purchase Behavior Among Young Customers Towards Coffee Stores In Ho Chi Minh City                                          |
| Nguyen Thi Huong Thanh, Nguyen Thuy Tien, Tran Minh Tuan, Dang Truong Thuy Anh, Vu Hai<br>Nam, Nguyen Van Dang                                       |

| Organization Citizenship Behaviors In Higher Education Context                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nguyen Ngoc Duy Phuong, Le Nguyen Thanh Dong, Nguyen Le Khanh Linh131                                                                                                                                      |
| The Relationship Between Dynamic Capabilities And Knowledge Management: The Case Of Five Smes In Vietnam                                                                                                   |
| Hoang Van Hung, Pham Thi Thuy Dung141                                                                                                                                                                      |
| Factors Affecting Organizational Commitment                                                                                                                                                                |
| Ly Dan Thanh                                                                                                                                                                                               |
| Job Satisfaction In Higher Education: Key Determinants And Measurements                                                                                                                                    |
| Nguyen Ngoc Duy Phuong, Nguyen Le Khanh Linh, Le Nguyen Thanh Dong159                                                                                                                                      |
| ECONOMICS: EXTERNAL ENVIRONMENT                                                                                                                                                                            |
| Analysis Of Sustainable Livelihoods Framework To Adapt Climate Change In Viet Nam  Huynh Nhut Nghia, Nguyen Dinh Cuong                                                                                     |
| Supply Chain Disruption Key Lessons Learnt From The Outbreak Of Covid-19                                                                                                                                   |
| Nguyen Anh Duy, Nguyen Phuc Quynh Nhu181                                                                                                                                                                   |
| "AGILITY" Enhancing Solution To Improve Competitiveness In Small And Medium Enterprises In Ho Chi<br>Minh City                                                                                             |
| Luu Thi Thanh Mai, Ho Thien Thong Minh189                                                                                                                                                                  |
| Factors Influencing Entrepreneurial Intention - The Perspective Of Entrepreneurial Success Factors  Ha Hoang, Le Thi Minh Hang                                                                             |
|                                                                                                                                                                                                            |
| Theoretical And Practical Issues Of University Governance Under The Current Autonomy Conditions  Tran Mai Uoc, Ngo Cao Cuong, Dang Thi Phuong Anh, Ma Nguyen Xuan Toan Ma Tran Thi Mai,  Ma Nguyen Mai Lam |
| Artificial Intelligence-Enabled Marketing In Emerging Economies: A Review And Research Agenda                                                                                                              |
| Tai Anh Kieu, Nguyen Ngoc Duy Phuong, Nguyen The Khai                                                                                                                                                      |
| Zoom, Skype, Or Google Meet? A New Conceptual Framework Of Determinant Factors Affecting Video-Conferencing Software Selection                                                                             |
| Minh Hoang Thien Luu                                                                                                                                                                                       |
| Factors Affecting The Intention Of Location Choice Of Vietnamese Enterprises To Invest Offshore  Do Thi Thu Ha, Phan Nguyen Xuan Mai                                                                       |
| FINANCE AND ECOMMERCE BUSINESS                                                                                                                                                                             |
| The Impact Of Financial Distress On Tax Avoidance: An Empirical The Vietnamese Listed Companies  Dang Van Cuong, Tran Xuan Hang                                                                            |
| The Impact Of Tax Revenues On Economic Growth: Evidence From Developing Economies                                                                                                                          |
| Ho Thuy Tien, Tran Xuan Hang, Nguyen Minh Hang, Nguyen Thi Kim Chi                                                                                                                                         |
| Corporate Social Responsibility In Maritime Industry: Impact Of Maritime CSR Policies On Seafarers' Welfare                                                                                                |
| Vu Hai Nam, Nguyen Pham Hai Ha, Truong Thanh Hai, Nguyen Thi Trang275                                                                                                                                      |

| The Status And Role Of Social Responsibility Accounting Training In The Context Of The Digital Economy                                        |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---|
| Ha Thi Thuy                                                                                                                                   | 7 |
| Discussion On A Smart City Model For Ho Chi Minh City                                                                                         | _ |
| Nguyen Tien Hung, Phan Thanh Tan29                                                                                                            | 5 |
| Determinants Of Bank Stability: Empirical Evidence In Vietnam Commercial Bank System  Tang My Sang, Nguyen Quoc Anh                           | 5 |
| Digital Transformation Of The Vietnam Commercial Bank System  Hoa Lam Thi Hong, Sang Tang My, Dung Le Phuong                                  | 5 |
| Exchange Rate Fluctuation And Application Of Stress Testing For Vietnamese Companies  Le Tran Nguyen Nhung, Tran Thi Trang                    |   |
| TOURISM AND HOSPITALITY MANAGEMENT COMMUNICATION AND PUBLIC RELATIONS 33                                                                      | 5 |
| The Development Of Dark Tourism In Chernobyl, Ukraine  Nguyen Vuong Hoai Thao                                                                 |   |
| Relationship Between Tourism Education With Human Resource Development In Tourism Enterprises Ir Vietnam                                      | 1 |
| Phan Duc Dung, Huynh Huu Nguyen34                                                                                                             | 7 |
| A Review Of The Efficiency Of Visa Policies On Tourism Development In Canada From 2010 To 2015  Nguyen Vuong Hoai Thao, Tran Van Thong        | 5 |
| Sustainable Tourism Development In Vietnam: Case Study Of The Appearing Of "Begpacker".  Duong Bao Trung                                      | 7 |
| Applied A Convergence Communications Model In University Communications  Hoang Thi Hong Ha                                                    | 7 |
| New Era Of Micro-Influencer Marketing In Tourism Destination Advertisement In Vietnam  Phan Nhan                                              | 6 |
| International Scientific Cooperation And Communication In Covid-19: Case Study Of Eu Countries  Hoang Mi                                      | 0 |
| LAW                                                                                                                                           | 9 |
| Recognition And Enforcement Of Final Awards Under The Eu-Vietnam Investment Protection Agreemen  Banh Quoc Tuan, Nguyen Thi Thai Ha           | t |
| Ideas From Bamako Convention For Vietnam And Eu In Controlling The Transboundary Movement Of Hazardous Wastes During The Enforcement Of Evfta |   |
| Phan Thi Huong Giang, Nguyen Truong Ngoc40                                                                                                    | 7 |
| Investment In Hazardous Waste Management Under Evfta- Implications For Vietnam Policies                                                       |   |
| Phan Thi Huong Giang41                                                                                                                        | 3 |

| Free Trade Agreement (EVFTA) And An Urge To Establish A Regulatory Sandbox To Govern Peer Peer (P2P) Lending                                        | То    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Nguyen Nam Trung                                                                                                                                    | 423   |
| Vietnam's Compliance With The European-Vietnam Free Trade Agreement Of Intellectual Property Protection: Issues And Recommendations For The Future. |       |
| Vu Anh Sao, Pho Hung Binh                                                                                                                           | 431   |
| TECHNOLOGY AND INFORMATION SECTION                                                                                                                  | 437   |
| A Proposed Fdlisr Approach For Medium-Voltage Distribution Networks With Distributed Generators                                                     |       |
| Phuc Duy Le, Duong Minh Bui, Cuong Cao Ngo, Phuc Cong Huynh, Minh Ngoc Doan                                                                         | 439   |
| A Proposed Statistical Data-Filtering For Short-Term Load Forecasting Application In Ho Chi Minh Cit                                                | ty    |
| Duong Minh Bui, Hoan Thanh Nguyen, Cuong Cao Ngo, Phuc Duy Le, Phuc Minh Hoang, Kh<br>Nguyen Tran                                                   | _     |
| A Review Of Data Mining Methods In Electronic Commerce                                                                                              |       |
| Nguyen Ha Giang                                                                                                                                     | 465   |
| Machine Learning And Its Applications  Nguyem Minh Tuan                                                                                             | 473   |
|                                                                                                                                                     | •     |
| A Novel Method For Mining Sequential Rules With Itemset Constraints  Van Thi Thien Trang                                                            | 491   |
| Blockchain Application In The Banking Industry                                                                                                      |       |
| De Thu Huynh                                                                                                                                        | 501   |
| How To Choose An Effective Trading Method In Binary Option Market?                                                                                  |       |
| Nguyen Quang Minh                                                                                                                                   | 509   |
| ENGLISH LANGUAGE STUDIES                                                                                                                            | 523   |
| Undergraduate Vietnamese EFL Students' Perception Of Mind-Mapping On Reading Skills                                                                 |       |
| Duong Thi Van Anh, Nguyen Phuong Thao, Hoang Kim Mai Khoi                                                                                           | 525   |
| Promoting Learner Autonomy In The Vietnamese University Context: Implications From Students' Perceptions Of Their Roles                             |       |
| Le Xuan Quynh                                                                                                                                       | 533   |
| The Production Of English Word-Final Consonants By Vietnamese Efl Learners And Vietnamese Interlanguage Syllable Structures                         |       |
| Nguyen Thi Quyen                                                                                                                                    | 547   |
| A Cross-Cultural Perspective On Strategies For Spoken Invitations And Implications For English Lang<br>Learning And Teaching                        | guage |
| Pham Huy Cuong                                                                                                                                      | 559   |
| LINGUISTICS AND INTERNATIONAL CULTURES                                                                                                              | 567   |
| Works Of After-Marriage Women Inside And Outside The Nuclear Family In Modern Japan From Feminist Perspective                                       |       |
| Luu Anh Tuan                                                                                                                                        | 569   |

| 日本語の主な終助詞―意味と用法<br>グエン・ホン・ロアン(Nguyen Hong Loan)                     | . 583 |
|---------------------------------------------------------------------|-------|
| 日越国際経済統合とグローバル化の背景<br>著者: ゲン・ティ・プォン・ニャー                             | . 591 |
| 한국어와 베트남어의 음운 대조 분석을 통해 베트남어권 한국어 학습자의 발음의 문제점 탐구 및<br>교육 방안        |       |
| 팜티튀린 (Pham Thi Thuy Linh)                                           | . 601 |
| 베트남인 한국어 학습자의 발음 오류 분석 파찰음과 마찰음의 발음 오류 분석을 중심으로<br>Nguyen Thanh Nam | . 613 |
| 日本企業文化<br>Vo Van Thanh Than                                         | . 631 |
| ベトナムの中等日本語教育におけるソフトスキルの育成 - 日本人ビジターが参加するプロジェクト型習の試み-                | 业学    |
| Pham Huynh Viet Anh                                                 | . 639 |
| 日本語主要助数詞の意味と用法<br>Le Nguyen Minh Thanh                              | . 645 |

#### Ho Chi Minh City University of Economics and Finace (UEF)

# THE FIRST INTERNATIONAL CONFERENCE ON SCIENCE, ECONOMICS AND SOCIETY STUDIES (ICSES 2020)



#### FACTORS AFFECTING ORGANIZATIONAL COMMITMENT

Ly Dan Thanh

Ho Chi Minh City University of Economics and Finance, Ho Chi Minh City, Vietnam

#### Abstract

Over the last few decades, organizational commitment has been the attractive subject for most researchers, due mainly to its importance for a strong desire to maintain membership in the organziation. Therefore, the paper aims to build a casual model of the antecedents of organizational commitment. First, the paper reviews five main concepts including internal communication, leadership, intrinsic motivation, extrinsic motivation and organizational commitment. Next, Five-point Likert scale is used to measure those factors with two hundred and forty-nine fulltime Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. Finally, quantitative research is obtained by using EFA, CFA analysis and Structural equation modeling (SEM). The findings show that three prominent factors positively affecting organizational commitment are intrinsic motivation, extrinsic motivation and leadership.

Keywords: organizational commitment; intrinsic motivation; extrinsic motivation; leadership

#### 1. Introduction

The term of organizational commitment has received much attention from scholars and practitioners over the world. There are several social experiments research conducted to increase employee commitment to organizations (M.J. Moon, 2000; Steers, 1977). Obviously, employees are considered as organization's assets; therefore, they play the essential role for several reasons. Buchanan (1974) and Wall (1980) confirm that employees feel tightly closed to goals and values of the organization toward organizational commitment. Previous researches also reveal that high performance is surely fulfilled by highly committed employees than less committed ones (Mowday, Steers, & Porter, 1978; Steers, 1977). Put it another way, according to Yousef et. al (2017), organizational commitment consists of three main categories. The first type is affective commitment that relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017). In fact, organizational commitment has been defined and conducted in a variety of research perspectives and methods.

For contributing more empirical results, the purpose of this paper aims to propose a model of antecedents of organizational commitment in the context of Vietnamese organizations in order to help leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization. The result is collected by the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at about 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business.

Initially, the paper reviews five main concepts including organizational commitment, internal communication, leadership, intrinsic motivation and extrinsic motivation. Next, Five-point Likert scale is used to measure those factors with two hundred and forty-nine fulltime Vietnamese employees who are working

at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. Finally, quantitative research is obtained by using EFA, CFA analysis and Structural equation modeling.

The findings show that four prominent factors positively affecting organizational commitment are leadership, intrinsic motivation and extrinsic motivation.

#### 2. Literature Review

#### 2.1. Organizational Commitment

As reviewed by Mowday et.al (1978), the concept of organizational commitment is defined as from the two main perspectives: behaviors and attitude. Moreover, it can be symbolized by at least there elements "1) a strong belief in arid acceptance of the organization's goals and values; 2) a willingness to exert considerable effort on behalf of the organization; and 3) a strong desire to maintain membership in the organization" (Mowday et al., 1978; Steers, 1977). Put it another way, from recent researches, according to Yousef et. al (2017), organizational commitment is originated from 3 distinct categories. The first type is affective commitment that relates mainly to emotional attachment, identification with and involvement in. The second one is continuance commitment which is based on the leaving organizational costs. Normative commitment is the third type known as a sense of obligation to the organization (Yousef, 2017). Importantly, it is believed that employees feel more attachment to the organizational goals and values toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980).

#### 2.2. Leadership

Leadership is considered as the key factor in determining whether the organization succeeds (Men, 2014). The style of leading should be "simpatico" or "diversity-friendly". A diversity leader from CEO to the first line supervisor is considered as a corporate manager who leads subordinates in a fair, effective and respectful way. Nine characteristics that a diversity leader must possess are Sensitive, Impartial, Mediators, Patient, Amiable, Teachers, Involved, Communicators, and Optimistic (Hopkins & Hopkins, 1998). Also, in term of leadership, Simola (2012) recommends transformational leadership in which leaders aim to transform, motivate and enhance their subordinates' actions and ethical aspirations. It contains four dimensions which are idealized influence, inspirational motivation, intellectual stimulation and individualized consideration (Judge & Bono, 2000; Simola, Barling, & Turner, 2012). Furthermore, this type of leadership brings more benefits for leading present workgroups because today's followers turn more challenged and empowered. Followers are in the need of an inspirational leader to guide them in uncertainty and intellectually stimulate and encourage their abilities and talents(Bass & Riggio, 2006). Put it another way, Kirkpatrick (1991) emphasizes leader's traits which include achievement, motivation, ambition, energy, tenacity and initiative. Leaders should be provided essential skills such as formulating an organization vision, making effective plans for vision implementation in reality (Kirkpatrick & Locke, 1991).

From most previous studies about leadership, the type of charisma becomes emerging. Partly like ethical one, emotionality is the main dimension in charismatic leadership, the nature of which is not very rational. Problem-solving is not mostly based on authority but rather on personal characteristics (Marjosola & Takala, 2000). Leadership can not be fulfilled without groups who have the common goals. Surely, it is hard for leaders or managers effectively achieving organization's goals and that the leader can only achive goals through followers' efforts and actions (Andersen, 2006). Fry (2007) highly appreciates type of servant

leadership which consists of four elements such as being a servant first, making sure that other people's needs are served; serving through listening; serving through people building and serving through leadership creation (Fry, Matherly, Whittington, & Winston, 2007). Similarly, another type of leadership is transformational leadership by which leaders motivates followers by appealing to their higher-order needs and induce employees to transcend self-interest for the sake of the group or the organization(Men, 2014). For the emphasis, Wallis (2002) strengthens that followers are mainly influenced by leadership's inspiration in which values and beliefs are shared by both leaders and followers. Zhu (2004) believes in ethical leaders who behave morally and always tend to create a healthy environment and organizational culture to grow ethical behaviors inside the organization (Zhu, May, & Avolio, 2004). Therefore, the author states:

Hypothesis 1: Leadership will positively affect organizational commitment.

Besides leadership, internal communication assists to transform information more specifically and effectively.

#### 2.3. Internal Communication

Internal communication is an essential process by which people exchange information, create relationship and build organizational culture and values as well. It is somehow called employee communication (Deetz, 2001; Men, 2014). Moreover, Martic (2014) emphasizes "Through internal communication, executives "pilots" the organization, as well as assure and guide employees to follow the mission and goals, encourgage loyalty, enhance employees to identify with the organization, increase their motivation and satisfaction with their work, develop mutual positive relationships between employees and the impact on the socialization of employees and organizational culture."(Martic, 2014). Above all, the best method for facilitating employees to gain specific goals is face-to-face communication (Okanovic, Stefanovic, & Suznjevic, 2014).

Eventhough, several blocks in communication happen such as age, gender, previous history of organization, distrust in management, regional differences and so far (Smith & Mounter, 2008). If it is symmetrical, it has the positive effect on the relationship between employees and their organization which in turn leads to employee advocacy. Men (2014) also claims that there is a linkage among leadership, communication and employee outcomes which positively cultivates the quality of this relationship(Men, 2014; Men & Jiang, 2016). If communication is effective, it plays as anusefulweapon for an organization (Ruck & Welch, 2012; Welch, 2011).

Furthermore, effective communication will foster the closer relationship between senior managers and employees (Welch, 2011). Especially, in the change process, along with commitment, social and cultural values, it plays a key role in which employees share information, build relationship and make things meaningful (Linke & Zerfass, 2011; Men & Stacks, 2014). From the same view point, Daly (2002) strengthens that internal communication is also a key issue with regard to how successful change management prorammes are performed (Daly, 2002). And therefore, this is the proposition of the relationship between international communication and organizational commitment.

Hypothesis 2: Internal communication will positively affect organizational commitment.

Besides that, motivation really works in sense of achievement, work engagement and positive outcomes.

#### 2.4. Intrinsic and Extrinsic Motivation

There have been some previous studies on motivation and its relationship with organizational commitment (M...J. Moon, 2000). Motivation term is commonly defined as a sense of achievement, recognition for high performance, responsibility and individual development and considered as a psychological process of the exchange between individual and environment (Jones & Lloyd, 2005; Latham & Pinder, 2005). Two main drivers of motivation are intrinsic and extrinsic (Gagne, Forest, M.H., & Aube, 2010; Kuvass, Buch, Weibel, Dysvik, & Nerstad, 2017; M...J. Moon, 2000). Whereas the former relates to the state of interest and enjoy, the latter is about doing something for instrumental reasons (Gagne et al., 2010; Katzell & Thompson, 1990). In other words, while intrinsic motivation is linked to work engagement, positive outcomes, productivity, extrinsic one is built by visible incentives (Kuvass et al., 2017).

From another perspective known as Self-Determination theory, Garne (2015) reveals a multidimensional definition of motivation that consists of the two main forms: autonomous and controlled motivation. The author prefers autonomous, because while autonomous motivation is about individuals' optimal functioning such as well-being, performance etc., controlled one is less beneficial (Gagne, Forest, & Vansteenkiste, 2015).

However, above all, most researchers believe that the role of stimulating employees to raise their voice doesn't really relate to money and recognition. Those who have a sense of achievement or job importance are likely to have more commitment to an organization. That's the reason for most authors to confirm that intrinsic drivers dominate extrinsic rewards (Jones & Lloyd, 2005; Kuvass et al., 2017; M..J. Moon, 2000; Tremblay, Blanchard, Taylor, Pelletier, & Villeneuve, 2009). This leads to the following hypotheses:

Hypothesis 3: Intrinsic motivation will positively affect Organizational commitment.

Hypothesis 4: Extrinsic motivation will positively affect Organizational commitment.

#### 3. Method and Results

#### **Data Collection**

The data for research is based on the survey of two hundred and forty-nine fulltime Vietnamese employees who are working at 34 Vietnamese organizations from a variety of sectors such as tax, banking, health service, airlines, education and business. All correspondents are subordinates with various titles from middle managers to staffs. The questionnaire was contained five constructs including organizational commitment, internal communication, leadership, intrinsic motivation and extrinsic motivation and distributed as hard copies that required handwritten responses. Five-point Likert scale is used to measure those factors with 29 items: totally disagree, disagree, neutral, agree, totally agree.

A total of 280 handouts of the questionnaire were delivered within six months in Hochiminh City and other neighboring provinces in southern Vietnam. However, only 249 handouts were returned and valid. Quantitative research is conducted by non-probability sampling and obtained by using EFA, CFA analysis and Structural Equation Modeling.

#### **Data analysis and Results**

To ensure the items in the questionnaire to be valid and reliable, the questionnaire is surveyed by two hundred and forty nine participants. The descriptive statistics result shows that it ranges with mean from 3.41 to. 4.16 and its standard deviations fluctuate from 0.750 to 0.976. Moreover, Cronbach's Alpha ratio is 0.959 (>0.8) with 29 items. (see Table 1)

Table 1. Descriptive statistics

| Table 1. Descriptive statistics                                                                                   |     |         |        |      |           |  |
|-------------------------------------------------------------------------------------------------------------------|-----|---------|--------|------|-----------|--|
|                                                                                                                   |     |         | Maximu |      | Std.      |  |
|                                                                                                                   | N   | Minimum | m      | Mean | Deviation |  |
| IC01,This company encourages differences of opinions.                                                             | 249 | 1       | 5      | 3.81 | .843      |  |
| IC02,Most communication between management and other                                                              |     |         |        |      |           |  |
| employees in this organization can be said to be two-way                                                          | 249 | 1       | 5      | 3.77 | .834      |  |
| communication.                                                                                                    |     |         |        |      |           |  |
| IC03,Your leader makes you feel comfortable working with                                                          | 249 | 1       | 5      | 3.82 | .849      |  |
| him/her.                                                                                                          |     |         |        |      |           |  |
| IC04,You would feel comfortable working with your leader.                                                         | 249 | 1       | 5      | 3.76 | .840      |  |
| LDS1,In the meeting, the leader will express the objective                                                        | 249 | 1       | 5      | 3.92 | .824      |  |
| opinion with followers.                                                                                           |     |         |        |      |           |  |
| LDS2,In the meeting, the leader will remain impartial rather                                                      | 249 | 1       | 5      | 3.88 | .882      |  |
| than speaking out and expressing his/her views.                                                                   |     |         |        |      |           |  |
| LDS3,In the meeting, the leader will express the                                                                  | 249 | 1       | 5      | 3.87 | .899      |  |
| nonconservative opinion with followers.                                                                           |     |         |        |      |           |  |
| LDS4,In the meeting, the leader will interact with followers-                                                     | 249 | 1       | 5      | 3.90 | .821      |  |
| social distance is low.                                                                                           |     |         |        |      |           |  |
| LDS5,In the meeting, the leader will support and encourage                                                        | 249 | 1       | 5      | 4.03 | .815      |  |
| followers to express their ideas.                                                                                 | 249 | 1       | 5      | 4.16 | .770      |  |
| LDS6,In the meeting, the leader will foster group goals.  LDS7,In the meeting, the leader will communicate a high | 249 | l I     | 5      | 4.10 | .//0      |  |
| degree of confidence in the followes' ability to meet                                                             | 249 | 1       | 5      | 3.86 | .828      |  |
| expectations.                                                                                                     | 249 | '       | 3      | 3.00 | .020      |  |
| LDS8,In the meeting, the leader will express high                                                                 |     |         |        |      |           |  |
| performance expectations for followers.                                                                           | 249 | 1       | 5      | 4.04 | .756      |  |
| LDS9,In the meeting, the leader provides recognition/rewards                                                      |     |         |        |      |           |  |
| when others reach their goals.                                                                                    | 249 | 1       | 5      | 3.83 | .840      |  |
| LDS10,In the meeting, the leader empowers his/her followers                                                       |     |         |        |      |           |  |
| to make the final decision.                                                                                       | 249 | 1       | 5      | 3.55 | .954      |  |
| IM01,Doing your job well gives you the feeling that you have                                                      |     |         | _      |      |           |  |
| accomplished something worthwhile.                                                                                | 249 | 1       | 5      | 3.96 | .750      |  |
| IM02,The things you do on your job are important to you.                                                          | 249 | 1       | 5      | 3.93 | .762      |  |
| IM03,You enjoy this work very much.                                                                               | 249 | 1       | 5      | 3.87 | .769      |  |
| IM04,You have fun doing your job.                                                                                 | 249 | 1       | 5      | 3.82 | .797      |  |
| EM01,If you produce a high quality of work output, you will                                                       | 240 |         | _      | 0.70 | 000       |  |
| lead to higher pay.                                                                                               | 249 | 1       | 5      | 3.73 | .909      |  |
| EM02,This job affords you a certain standard of living.                                                           | 249 | 1       | 5      | 3.57 | .918      |  |
| EM03,It allows you to make a lot of money.                                                                        | 249 | 1       | 5      | 3.28 | .976      |  |
| EM04,Producing a low quality of work decreases your                                                               | 249 | 1       | 5      | 3.71 | .911      |  |
| chances for promotion.                                                                                            | 249 | '       | 5      | 3.71 | ا ا ا ق   |  |
| OGC1,You have warm feelings toward this organization as a                                                         | 249 | 1       | 5      | 3.74 | .856      |  |
| place to live and work.                                                                                           |     | '       |        | 5.14 | .555      |  |
| OGC2,You feel yourself to be part of the organization.                                                            | 249 | 1       | 5      | 3.68 | .857      |  |

|                                                                                                                   |     |         | Maximu |      | Std.      |
|-------------------------------------------------------------------------------------------------------------------|-----|---------|--------|------|-----------|
|                                                                                                                   | N   | Minimum | m      | Mean | Deviation |
| OGC3,You like to feel you are making some effort, not just for yourself but for the organization as well.         | 249 | 1       | 5      | 3.90 | .792      |
| OGC4,You really feel as if this organization's problems are your problems.                                        | 249 | 1       | 5      | 3.96 | .756      |
| OGC5, You feel a sense of pride working for this organization.                                                    | 249 | 1       | 5      | 3.85 | .804      |
| OGC6,In your work, you are willing to put in a great deal of effort beyond that normally expected.                | 249 | 1       | 5      | 3.82 | .778      |
| OGC7,The offer of a bit more money with another employer would not seriously make you think of changing your job. | 249 | 1       | 5      | 3.41 | .976      |
| Valid N (listwise)                                                                                                | 249 |         |        |      |           |

#### **Reliability Statistics**

|            | Cronbach's     |            |
|------------|----------------|------------|
|            | Alpha Based on |            |
| Cronbach's | Standardized   |            |
| Alpha      | Items          | N of Items |
| .958       | .959           | 28         |

EFA factor analysis is the next step. It is analyzed in two phases. Phase one is for independent variables, and phase two is for the dependent one.

In the first phase, four independent variables which are internal communication, leadership, intrinsic motivation and extrinsic motivation are included in EFA factor analysis with principal components method and rotation Varimax. Specifically, KMO equals to 0.909 (≥0.5) and sig.001 (≤0.05), therefore Bartlett's Test is statistically significant. (see Table 2)

Table 2. KMO and Bartlett's Test

| Kaiser-Meyer-Olkin Measure of | .909     |      |
|-------------------------------|----------|------|
| Bartlett's Test of Sphericity | 3790.690 |      |
|                               | df       | 231  |
|                               | Sig.     | .000 |

After Rotation method Varimax with Kaiser Normalization, 22 items of independent variables are separated into five factors, however, only four main factors are valid.

While component 1 contains nine items named Leadership: LDS1, LDS2, LDS3, LDS4, LDS5, LDS6, LDS7, LDS8, LDS9, component 2 involves four items called Intrinsic Motivation: IM01, IM02, IM03, IM04. Similarly, component 3 mainly includes four items grouped as Internal Communication: IC01, IC02, IC03, IC04. Last but not least, Extrinsic Motivation is for component 4, mainly containing 4 items: EM01, EM02, EM03, EM04.

The evaluation of Cronbach's Alpha after EFA analysis rotated for 4 factors: Internal communication, Leadership, Intrinsic motivation and Extrinsic motivation are simultaneously at at .926; .861; .890 and .811 with KMO equals to 0.917; 0.733; 0.790; and 0.718, respectively. They all are accepted. (see Table 3).

Table 3. EFA Result - Rotated Component Matrix

|                |        |        | Component |        |      |
|----------------|--------|--------|-----------|--------|------|
|                | 1      | 2      | 3         | 4      | 5    |
| IC01           |        |        | .549      |        |      |
| IC02           |        |        | .705      |        |      |
| IC03           |        |        | .790      |        |      |
| IC04           |        |        | .800      |        |      |
| LDS1           | .670   |        |           |        |      |
| LDS2           | .672   |        |           |        |      |
| LDS3           | .675   |        |           |        |      |
| LDS4           | .604   |        |           |        |      |
| LDS5           | .770   |        |           |        |      |
| LDS6           | .735   |        |           |        |      |
| LDS7           | .721   |        |           |        |      |
| LDS8           | .677   |        |           |        |      |
| LDS9           | .718   |        |           |        |      |
| LDS10          |        |        |           |        | .850 |
| IM01           |        | .747   |           |        |      |
| IM02           |        | .786   |           |        |      |
| IM03           |        | .759   |           |        |      |
| IM04           |        | .703   |           |        |      |
| EM01           |        |        |           | .622   |      |
| EM02           |        |        |           | .829   |      |
| EM03           |        |        |           | .888   |      |
| EM04           |        |        |           | .546   |      |
| Eigenvalue     | 5.835  | 2.821  | 3.011     | 2.564  |      |
| Cumulative     | 68.452 | 70.520 | 75.269    | 64.107 |      |
| Cronbach Alpha | .926   | .861   | .890      | .811   |      |

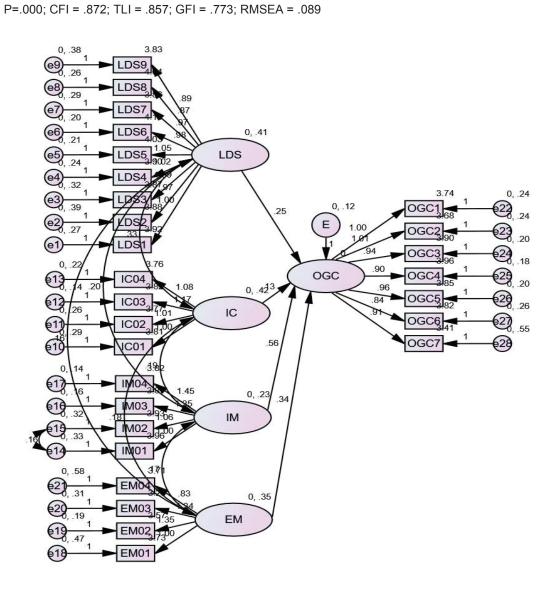

In the second phase, the dependent variable "organizational Commitment" is evaluated by EFA analysis. The result is that the evaluation of Cronbach's Alpha for dependent variable "Organizational Commitment" is .919 which is accepted. Furthermore, KMO equals to 0.887 (≥0.5) and sig.001 (≤0.05) that also mean the Bartlett's Test is statistically significant and all factor loadings are more than 0.699. (see Table 4)

Table 4. KMO and Bartlett's Test

| Kaiser-Meyer-Olkin | .887               |          |
|--------------------|--------------------|----------|
| Bartlett's Test of | Approx. Chi-Square | 1201.707 |
| Sphericity         | df                 | 21       |
|                    | Sig.               | .000     |

#### **CFA Factor Analysis**

Figure 1. Results of CFA concepts of research model (standardized)



**Table 5. Regression Weights** 

|            | Estimate | S.E. | C.R.   | Р    | Label |
|------------|----------|------|--------|------|-------|
| OGC < LDS  | .250     | .092 | 2.733  | .006 |       |
| OGC < IC   | .131     | .088 | 1.479  | .139 |       |
| OGC < IM   | .562     | .109 | 5.133  | ***  |       |
| OGC < EM   | .344     | .072 | 4.774  | ***  |       |
| LDS1 < LDS | 1.000    |      |        |      |       |
| LDS2 < LDS | .966     | .083 | 11.692 | ***  |       |
| LDS3 < LDS | 1.095    | .082 | 13.301 | ***  |       |
| LDS4 < LDS | 1.025    | .075 | 13.722 | ***  |       |
| LDS5 < LDS | 1.046    | .074 | 14.213 | ***  |       |
| LDS6 < LDS | .976     | .070 | 13.995 | ***  |       |
| LDS7 < LDS | .974     | .076 | 12.746 | ***  |       |
| LDS8 < LDS | .874     | .070 | 12.496 | ***  |       |
| LDS9 < LDS | .888     | .079 | 11.214 | ***  |       |
| IC01 < IC  | 1.000    |      |        |      |       |
| IC02 < IC  | 1.014    | .078 | 13.026 | ***  |       |
| IC03 < IC  | 1.171    | .078 | 15.062 | ***  |       |
| IC04 < IC  | 1.076    | .078 | 13.856 | ***  |       |
| IM01 < IM  | 1.000    |      |        |      |       |
| IM02 < IM  | 1.062    | .083 | 12.735 | ***  |       |
| IM03 < IM  | 1.350    | .125 | 10.831 | ***  |       |
| IM04 < IM  | 1.450    | .131 | 11.041 | ***  |       |
| EM01 < EM  | 1.000    |      |        |      |       |
| EM02 < EM  | 1.353    | .123 | 10.989 | ***  |       |
| EM03 < EM  | 1.342    | .126 | 10.615 | ***  |       |
| EM04 < EM  | .827     | .110 | 7.545  | ***  |       |
| OGC1 < OGC | 1.000    |      |        |      |       |
| OGC2 < OGC | 1.009    | .066 | 15.176 | ***  |       |
| OGC3 < OGC | .937     | .061 | 15.277 | ***  |       |
| OGC4 < OGC | .900     | .058 | 15.432 | ***  |       |
| OGC5 < OGC | .961     | .062 | 15.539 | ***  |       |
| OGC6 < OGC | .836     | .063 | 13.339 | ***  |       |
| OGC7 < OGC | .908     | .082 | 11.062 | ***  |       |

The results of CFA factor analysis of the research model are presented in Figure 1. They are presented as follow: P=.000; CFI=.872; TLI=.857; GFI=.773; RMSEA=.089. According to the conditions with P<0.05; CFI,  $TLI\geq0.8$ ; GFI is approximately 0.773 and RMSEA is approximately 0.08, they all meet the requirements. Considering the above conditions, the model is consistent with market data.

Based on the results in *Table 5*, the parameters (standardized) are statistically significant (p<0.05). Consequently, three factors LDS, IM, and EM have significant effects on Organizational commitment while IC with weight of -.131 and P-value 0.139 does not.

According to the regression weight between factors shown, while leadership positively affects organizational commitment with weight of .250, intrinsic motivation positively affects organizational commitment with weight of .562. Specifically, when leadership goes up by 1 standard deviation, organizational commitment goes up by 0.250 standard deviation and when intrinsic motivation goes up by 1 standard deviation, organizational commitment goes up by 0.562 standard deviation. Similarly, with weight of .344, extrinsic motivation has a positive effect on organizational commitment. (see Table 5)

#### 4. Discussion

It is found that empirically, three antecedents mainly affecting organizational commitment are leadership, intrinsic motivation and extrinsic. It may be explained that whereas internal communication is mentioned in the literature of the antecedents of organizational commitment, it is insignificant in statistics. The findings restates the role of leadership as the key factor in determining whether the organization succeeds (Men, 2014). To those three main antecedents that influence organizational commitment, it is obvious that motivation plays an important role in encouraging employees to work much better for higher performance with a sense of achievement, and take more responsibility to their job (Jones & Lloyd, 2005; Latham & Pinder, 2005). Both intrinsic and extrinsic motivations really work well. Even though either of them has its own beneficial values, they are all linked to positive outcomes, higher productivity and even more organizational commitment. Employees tend to engage in their work and their organization (Gagne et al., 2010; Katzell & Thompson, 1990; Kuvass et al., 2017). Apparently, when employees feel engaged, they naturally have the perception of identification. In other words, they have their loyalty and shared characteristics with their organization and its success or failure as well (Lee, 1970; Mael & Ashforth, 1992). Furthermore, they also feel proud of being a part of an organization and highly recommend the organization's values and achievement (Charles O'Reilly & Chatman, 1986).

#### 5. Implications and Conclusion

#### **Implications**

For future research, what we should do next is to find out more factors affecting organizational commitment besides what have been investigated in this paper.

#### Conclusion

The term organizational commitment has been variably defined, measured, and researched. However, it has yet researched fully in the Vietnamese context. With the survey of 34 organizations from a variety of sectors such as tax, banking, health service, airlines, education and business, the findings show that empirically, three main antecedents that positively affect organizational commitment are leadership, intrinsic motivation and extrinsic motivation. The model of antecedents strengthening organizational commitment will help leaders making plans of action or designing suitable and efficient policies for motivating employees to increase their job performance and have more commitment to their organization.

#### Refferences

Andersen, J. A. (2006). Leadership, personality and effectiveness The Journal of Socio-Economics, 35. Bass, B. M., & Riggio, R. E. (2006). Transformational Leadership. London: Lawrence Erlbaum Associates, Inc.

Buchanan, B. (1974). Building Organizational Commitment: The Socialization of Managers in Work Organizations Administrative Science Quarterly, 4, 533-546.

Charles O'Reilly, C., & Chatman, J. (1986). Organizational Commitment and Psychological Attachment: The Effects of Compliance, Identification, and Internalization on Prosocial Behavior. Journal of Applied Psychology, 71(3), 492-499.

Cook, J., & Wall, T. (1980). New work attitude measures of trust, organizational commitment and personal need non-fulfilment. Journal of Occupational Psychology, 53, 39-52.

Daly, P. J. K. F. (2002). Internal communication during change management. Corporate Communications: An international Journal, 17, 46-53.

Deetz, S. (2001). Conceptual foundations In The new handbook of organizational communication: Advances in theory, research and methods (pp. 3-46): Thousand Oaks, CA: Sage.

Fry, L. W., Matherly, L. L., Whittington, J. L., & Winston, B. E. (2007). Spiritual Leadership as an Integrating Paradigm for Servant Leadership. In Integrating Spirituality and Organizational Leadership.

- Gagne, M., Forest, J., M.H., M.-H. G., & Aube, C. (2010). The Motivation at Work Scale: Validation Evidence in Two Languages. Educational and Psychological Measurement, 70(4), 628 –646
- Gagne, M., Forest, J., & Vansteenkiste, M. (2015). The Multidimensional Work Motivation Scale: Validation evidence in seven languages and nine countries. European Journal of Work and Organizational Psychology, 24(2), 178–196.
- Hopkins, W. E., & Hopkins, S. A. (1998). Diversity Leadership: A mandate for the 21st Century Workforce. The Journal of Leadership Studies, 5(3).
- Jones, N. B., & Lloyd, G. C. (2005). Does Herzberg's motivation theory have staying power? . Journal of Management Development, 24(10), 929-943
- Judge, T. A., & Bono, J. E. (2000). Five-Factor Model of Personality and Transformational Leadership. Journal of Applied Psychology, 85(5), 751-765.
- Katzell, R. A., & Thompson, D. E. (1990). Work motivation theory and practice. American Psychologist, 45(2), 144-153.
- Kirkpatrick, S. A., & Locke, E. A. (1991). Leadership: Do traits matters? Academy of Management Executive, 5(2).
- Kuvass, B., Buch, R., Weibel, A., Dysvik, A., & Nerstad, C. G. L. (2017). Do intrinsic and extrinsic motivation relate differently to employee outcomes? Journal of Economic Psychology, 61, 244-258.
- Latham, G. P., & Pinder, C. C. (2005). Work motivation theory and research at the dawn of the twenty-first century. Annual Review of Psychology, 56, 485–516.
- Lee, S. M. (1970). An Empirical Analysis of Organizational Identification. Academy of Management Journal.
- Linke, A., & Zerfass, A. (2011). Internal communication and innovation culture: developing a change framework Journal of Communication Management, 15(4), 332-348.
- Mael, F., & Ashforth, B. E. (1992). Alumni and their alma mater: A partial test of the reformulated model of organizational identification Journal of Organizational Behavior, 13, 103-123
- Marjosola, I. A., & Takala, T. (2000). Charismatic leadership, manipulation and the complexity of organizational life. Journal of Workplace Learning.
- Martic, M. (2014). Communication between employees. Paper presented at the Symorg 2014, Serbira. Men, L. R. (2014). Strategic Internal Communication: Transformational Leadership, Communication Channels, and Employee Satisfaction. Management Communication Quarterly, 28(2), 264 –284
- Men, L. R. (2014). Why Leadership Matters to Internal Communication: Linking Transformational Leadership, Symmetrical Communication, and Employee Outcomes. Journal of Public Relations Research, 26, 256–279.
- Men, L. R., & Jiang, H. (2016). Cultivating Quality Employee-Organization Relationship. International journal of strategic communication, 10(5), 462–479
- Men, L. R., & Stacks, D. (2014). The Effects of Authentic Leadership on Strategic Internal Communication and Employee-Organization Relationships Journal of Public Relations Research, 26, 301-324
- Moon, M. J. (2000). Organizational Commitment Revisited in New Public Management: Motivation, Organizational Culture, Sector, and Managerial Level Public Performance & Management Review, 24(2), 177-194
- Moon, M. J. (2000). Organizational Commitment Revisited in New Public Management: Motivation, Organizational Culture, Sector, and Managerial Level Public Performance & Management Review, 24(2), 177-194.
- Mowday, R. T., Steers, R. M., & Porter, L. W. (1978). The measurement of Organizational Commitment: A progress report. Technical report.
- Okanovic, M., Stefanovic, T., & Suznjevic, M. (2014). New Media in Internal Communication. Paper presented at the Symorg 2014, Serbira.
- Rees, C., Alfes, K., & Gatenby, M. (2013). Employee voice and engagement: connections and consequences. The International Journal of Human Resource Management, 14, 2780–2798.
- Ruck, K., & Welch, M. (2012). Valuing internal communication; management and employee perspectives. Public Relation Review 38(2012), 38, 223-230.
- Simola, S., Barling, J., & Turner, N. (2012). Transformational leadership and Leader's Mode of Care Reasoning Journal of Business Ethics, 229-237. doi:DOI 10.1007/s10551-011-1080-x
  - Smith, L., & Mounter, P. (2008). Effective Internal Communication. USA: Replika Press Pvt Ltd.
- Steers, R. M. (1977). Antecedents and Outcomes of Organizational Commitment Administrative Science Quarterly, 22(1), 46-56
- Tremblay, M. A., Blanchard, C. M., Taylor, S., Pelletier, L. G., & Villeneuve, M. (2009). Work Extrinsic and Intrinsic Motivation Scale: Its Value for Organizational Psychology Research. Canadian Journal of Behavioural Science, 4, 213–226. doi:10.1037/a0015167
- Welch, M. (2011). Appropriateness and acceptability: Employee perspectives of internal communication. Public Relation Review, 38.

Yousef, D. A. (2017). Organizational Commitment, Job Satisfaction and Attitudes toward Organizational Change: A Study in the Local Government International Journal of Public Administration, 40(1), 77-88.

Zhu, W., May, D. R., & Avolio, B. J. (2004). The Impact of Ethical Leadership Behavior on Employee Outcomes: The Roles of Psychological empowerment and Authencity. Journal of Leadership and Organizational Studies.

Print ISSN: 2288-4637 / Online ISSN 2288-4645 doi:10.13106/jafeb.2021.vol8.no5.1055

## Critical Factors for Organizational Commitment: An Empirical Study in Vietnam

Dan Thanh LY<sup>1</sup>, Van Chon LE<sup>2</sup>, Quang Thong BUI<sup>3</sup>, Nhu-Ty NGUYEN<sup>4</sup>

Received: February 10, 2021 Revised: April 05, 2021 Accepted: April 15, 2021

#### Abstract

How to manage a business effectively and successfully is the most important goal of all businesses on their way to expand and develop. Most researchers have confirmed that highly committed employees may perform better than less committed ones. The paper aims to find out what critical factors really affect employee's commitment for success of a business. The findings show that three factors having impacts on organizational commitment are leadership, meeting effectiveness and job satisfaction. Particularly, leadership positively affects meeting effectiveness with weight of 0.838. It is believed that if employees feel satisfied with their job, they become more committed to their organization. In addition, it is evident that meeting effectiveness positively affects organizational commitment with weight of 0.296. Last but not the least, in the relationship between meeting effectiveness and organizational commitment, there is a mediator of job satisfaction with the indirect effect of 0.454 and its bootstrap errors at 0.053. It emphasizes the importance of meetings in workplaces. In order to make subordinates satisfied with their jobs, every conflict or problem needs to be thoroughly resolved in meetings. That's why meeting effectiveness has a significant effect on job satisfaction. Furthermore, whether meetings are effective or not is based on leaders or meeting organizers.

Keywords: Leadership, Job Satisfaction, Meeting Effectiveness, Organizational Commitment, Business Success

JEL Classification Code: M10, M21, G30, L25

#### 1. Introduction

The practice of strategic management has become one of the most interesting subjects for most research papers. How to manage the business effectively and successfully is the vital goal of all businesses on their way to expand and develop (Hornsby & Kuratko, 1990). Bowen and Morara (2009) states that SMEs have been faced with the threat of failure and challenges of competition themselves and from large firms (Bowen et al., 2009). To be successful, businesses have to do a mix of strategies in advance for both external and internal factors, especially for human resources management (Guest, 2010; Hornsby & Kuratko, 1990; Lussier & Pfeifer, 2001). The previous studies show that strategic management factors along with organizational commitment increase the performance of employees and work achievement (Rustamasji, 2018).

Job satisfaction, leadership, meeting effectiveness and organizational commitment are the main factors for this research journey. It is believed that there is an integrated relationship among them. In every organization, meetings are the common activities for a variety of purposes such as performing and reaching vital goals, communicating and exchanging ideas or making changes and similar activities. However, most meetings are considered to be ineffective even though much time and effort is devoted (Allen, 2012). Actually, from the literature of meeting effectiveness, leaders or meeting organizers play the very essential role (Nixon & Littlepage, 2014). For instance, whenever conflicts occur in a meeting, leaders or meeting organizers will be those who make the final decision. They control whatever activities during the discussion time. Most conflicts on work can be peacefully

Email: nhutynguyen@gmail.com; nhutynguyen@hcmiu.edu.vn

<sup>&</sup>lt;sup>1</sup>First Author. [1] Ho Chi Minh City University of Economics and Finance (UEF); [2] School of Business, International University (IU); [3] Vietnam National University, Ho Chi Minh City, Vietnam.

<sup>&</sup>lt;sup>2</sup>[1] School of Business, International University (IU); [2] Vietnam National University, Ho Chi Minh City, Vietnam.

<sup>&</sup>lt;sup>3</sup>[1] School of Business, International University (IU); [2] Vietnam National University, Ho Chi Minh City, Vietnam.

<sup>&</sup>lt;sup>4</sup>Corresponding Author. [1] School of Business, International University (IU); [2] Vietnam National University, Ho Chi Minh City, Vietnam [Postal Address: Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh City, 700000, Vietnam]

<sup>©</sup> Copyright: The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

resolved through meetings. If given-solutions aim to improve team effectiveness, they will bring positive experience and benefits to related-problem members (Esquivel & Kleiner, 1996; Guetzkow & Gyr, 2015). Thanks to meetings, subordinates feel satisfied with their job because during interactions, they have chances to exchange information, clarify ideas, build common ground, contribute ideas and so forth (Meinecke & Lehmann, 2015). In fact, effective meetings will encourage subordinates to contribute more efforts and increase more commitment to their workplace. In other words, if subordinates feel satisfied with their jobs, they will express their strong desire to keep the membership with their organization (Mowday et al., 1978; Steers, 1977).

The paper aims to find out what critical factors really affect organizational commitment for business success. The study has been conducted to demonstrate the interactions and relationships among these main constructs, which are leadership, meeting effectiveness, job satisfaction and organizational commitment. The authors design a survey based on the three research questions: How to make meetings more effective? How does meeting effectiveness affect organizational commitment? What will mediate the influence between meeting effectiveness and organizational commitment? This study contributes to the body of the literature in the field of meeting effectiveness, job satisfaction and organizational commitment from theoretical perspective. Even though, the concept of meeting has become popular these days in academic research environment worldwide due to its essential role in working life, it is still rather subdued in Vietnam. Furthermore, the interaction and relationship effectiveness meeting and organizational commitment haven't been studied. The new findings show that there is an impact of job satisfaction as a mediator for meeting effectiveness on organizational commitment.

First, the paper reviews four main factors: meeting effectiveness, leadership, job satisfaction and organizational commitment. Next, the survey of Five-point Likert scale is used to measure those factors with two hundred and forty-nine respondents who worked at about 34 Vietnamese organizations from a variety of sectors such as banking, health service, airlines, education and business. Finally, quantitative research is performed by using EFA, CFA analysis and SEM. The results show that leadership directly affects meeting effectiveness; and meeting effectiveness influences organizational commitment with the mediation of job satisfaction.

#### 2. Literature Review

#### 2.1. Meeting Effectiveness

Generally, meetings play a vital role in organizations because they strategically produce consequential outcomes.

They can also be considered as the central points for organizational activities that are essential for members (Jarzabkowski & Seidl, 2008). Typical kinds of meeting are listed as board meetings, committee meetings, departmental meetings and the like (Baker, 2010). If the meetings aim at facilitating employees and organizations to achieve their goals, they obviously become organizational tools that bring benefits (Rogelberg et al., 2006).

As a result, meeting effectiveness needs to be focused for gaining organizational members' higher performance. Actually, it was tightly involved in decision satisfaction and goal attainment. Several studies claim that to be effective, meetings need to be open, task-focused and impartial in communication (Allen et al., 2014; Nixon & Littlepage, 2014). To strengthen the same viewpoint, Bagire (2015) states that the effective meeting shouldn't lack a clear purpose and a specific agenda, date, duration and materials and moreover emphasizes that whether a meeting is effective or not is mainly relied on the chairperson's central role in leading the meeting (Bagire et al., 2015). Even though factors such as irrelevant topics, excessive time length and poor or inadequate preparation may affect meeting productivity (Nicholas & Jay, 2001; Pattiruhu et al., 2020), the important one is the role of team leaders or facilitators who control a meeting (Volkema & Fred, 1996). Specifically, an organization is mainly influenced by the host who has the strongest power in making the final decision (Lestari et al., 2020; Nguyen et al., 2021; Nguyen & Khoa, 2020). It is referred as leadership.

#### 2.2. Leadership

From the literature of meeting effectiveness, it can be inferred that the leaders play most essential role (Nixon & Littlepage, 2014). In current situation with a highly diverse workforce, leadership is the decisive factor for any organization's success. It needs to be trained and improved (Men, 2014). The common style is named "diversity-friendly" or "simpatico". Generally, a diversity leader works as a corporate manager, that is, he or she leads subordinates in an impartial, effective and communicative way. Moreover, such a diversity leader is expected to have those characteristics which are Sensitive, Impartial, Mediators, Patient, Amiable, Teachers, Involved, Communicators, and Optimistic (Hopkins & Hopkins, 1998).

According to Simola et al. (2012), transformational leadership is most recommended. Leaders of this type have the responsibilities to transform, motivate and encourage their subordinates in order to reach their expectation ethically at work (Bass & Riggio, 2006; Simola et al., 2012). In other words, it consists of four dimensions such as idealized influence, inspirational motivation, intellectual stimulation and individualized consideration (Judge & Bono, 2000;

Simola et al., 2012). In fact, followers always expect to be under the control of inspirational leaders who direct them in uncertainty and facilitate them to perform their talents (Bass & Riggio, 2006).

Another type of leadership that is most preferred is charisma. Emotionality is the main dimension in this type, the nature of which is not very rational. For instance, problemsolving is not mostly based on authority but rather on personal characteristics (Marjosola & Takala, 2000) and evidently, leaders are hard to effectively achieve goals by just only through followers' efforts and specialty (Andersen, 2006).

From another perspective, Fry et al. (2007) highly appreciates this type of servant leadership. Four main characteristics of this type are being a servant first, serving people's needs; serving through listening; serving through people building and serving through leadership creation (Fry et al., 2007). Sharing the same viewpoint, Men (2014) emphasizes transformational one in which leaders motivate followers by appealing to their higher-order needs and induce employees to look beyond their selfish interests for the sake of the group or the organization (Men, 2014).

Above all, leadership becomes the most decisive factor in an organization for its success and thus, leaders are suggested to be provided essential skills, for examples, formulating vision for an organization or setting effective objectives and plans to implement that vision in practice (Kirkpatrick & Locke, 1991). Obviously, in reality, the meeting will be more effective if it is led by the transitional or charismatic leadership. Therefore, the authors posit:

H1: Leadership will be positively related to Meeting effectiveness.

#### 2.3. Job Satisfaction

The concept of job satisfaction has been defined in various ways. According to previous studies, it is expressed as an emotion that relates to a person's overall evaluation with respect to their work environment and is considered to be involved in five facets: pay, promotions, peers, superiors and the work itself (Alegre et al., 2015; Yousef, 2017; Bui et al., 2021). Similarly, Steel et al. (2018) emphasizes that job satisfaction is considered as the cognitive evaluation of the well-being quality of one's job, such as with pay, coworkers or supervisors (Steel et al., 2014; Nguyen, 2021; Johl et al., 2015). To put it in another way, some authors define it as the pleasurable emotional state originating from the organization's appraisal for those who are supported to achieve their job values (Lu et al., 2016). Furthermore, in Judge's study, he also confirms that job satisfaction is described as a pleasure or positive emotional state resulting from the appraisal of one's job or job experiences (Judge & Klinger, 2008). In fact, job attitudes and well-being have the relationship with meeting

demands and therefore, the more effective the meeting is, the more satisfied the subordinates feel (Burnfield et al., 2006; Cao et al., 2021). Importantly, it is an integrated factor of organizational behavior that needs to be interested, supervised and improved in order to avoid unmeasurable reactions of dissatisfaction (Masadeh et al., 2019).

As mentioned above, meeting effectiveness is positively linked to employee creativity through job satisfaction (Alonderiene & Majauskaite, 2016). Thus:

**H2:** Meeting effectiveness is positively related to Job satisfaction.

#### 2.4. Organizational Commitment

Previously, there was an ambiguity in the concepts of organizational commitment and organizational identification. However, recently these terms have been discussed theoretically and tested empirically by Gautam et al. (2004). The authors strongly conclude that whereas organizational identification is self-referential or self-definitional, commitment is not and that while identification is related to perceived similarity and shared fate with the organization, commitment is formed by exchange-based factors known as the relationship between the individual and the organization (Gautam et al., 2004). Employees feel more attachment to the organizational goals and values toward organizational commitment (Buchanan, 1974; Cook & Wall, 1980). As reviewed by Mowday et al. (1978), the concept of organizational commitment is defined as from the two main perspectives: behaviors and attitude. It is the relation between an individual's identification and involvement with the organization in which people work for. Moreover, organizational commitment can be symbolized by at least three elements "1) a strong belief in arid acceptance of the organization's goals and values; 2) a willingness to exert considerable effort on behalf of the organization; and 3) a strong desire to maintain membership in the organization" (Mowday et al., 1978; Steers, 1977) and is a process of identification (Reichers, 1985). This leads to the following hypotheses:

**H3:** Job satisfaction will be positively related to Organizational commitment.

*H4:* Job satisfaction will mediate the relationship between Meeting effectiveness and Organizational commitment.

**H5:** Meeting effectiveness is positively related to Organizational commitment.

#### 3. Methodology

The data for the research is based on the survey of two hundred and forty-nine respondents who are working at about 34 Vietnamese organizations from a variety of sectors such as banking, health service, airlines, education and business. The firm requirement is that they all are subordinates with various titles from middle managers to staff, but not in the top management board. The questionnaires contained four factors: leadership, meeting effectiveness, job satisfaction and organizational commitment and were distributed as hard copies that required handwritten responses. Five-point Likert scale is used to measure those factors with 28 items: totally disagree, disagree, neutral, agree, totally agree. A total of 249 completed handouts of questionnaires are done within six months in Ho Chi Minh City and other neighboring provinces in southern Vietnam were returned and were found to be valid. Quantitative research is conducted by non-probability sampling method by using EFA, CFA analysis and SEM.

It is so strict because inherently Vietnamese people belong to high-context culture in which most of them tend to be indirect and nonverbal in their communication. This stereotype of culture deeply influences their mind. That's why, in every meeting, the subordinates seem to be silent and agreeable without questioning even though they have different view point from their boss. Therefore, with the aim of understanding the subordinates and knowing how effective the meeting should be so that they feel satisfied after exchanging ideas, making changes and fulfilling the consensus, the authors decide to survey those who are all subordinates. Due to this culture, a boss is considered as the highest decision making person who has full control of meetings and directs his subordinates to meet any decided actions.

#### 4. Results

To ensure the items in the questionnaire to be valid and reliable, the questionnaire is surveyed by two hundred and forty nine participants. The descriptive statistics result shows that it ranges with mean from 3.55 to. 4.16 and its standard deviations fluctuate from 0.727 to 0.976. Moreover, Cronbach's Alpha ratio is 0.916 (> 0.8) with 28 items (see Table 1).

Next step is EFA factor analysis. It is classified into two phases. Phase one is for independent variables, and phase two is for the dependent one.

In the first phase, three independent variables which are leadership, meeting effectiveness and job satisfaction are included in EFA factor analysis with principal components method and rotation Varimax. Specifically, KMO equals to  $0.939 (\ge 0.5)$  and sig.  $0.001 (\le 0.05)$ , therefore Bartlett's Test is statistically significant (see Table 2).

After Rotation method Varimax with Kaiser Normalization, 21 items of independent variables are separated into three factors. Factor 1 consists of nine items named Leadership: LDS1, LDS2, LDS3, LDS4, LDS5, LDS6, LDS7, LDS8, LDS9. However, LDS9 is eliminated

because the difference of factor loadings between two factors is less than 0.3. Factor 2 involves six items called Meeting effectiveness: LDS10, MET1, MET2, MET3, MET5 and MET6. Last but not least, Job satisfaction is for Factor 3 contain four items: JOB1, JOB2, JOB3 and JOB4.

The evaluation of Cronbach's Alpha after EFA analysis for 3 factors: Leadership, Meeting effectiveness and Job satisfaction are simultaneously at 0.922; 0.863; and 0.888. They all are accepted. (see Table 3).

In the second phase, the dependent variable "Organizational Commitment" is evaluated by EFA analysis. The result is that the evaluation of Cronbach's Alpha for dependent variable "Organizational Commitment" is 0.916 which is accepted. Furthermore, KMO equals to 0.887 ( $\geq$  0.5) and sig. 001 ( $\leq$  0.05) that also mean the Bartlett's Test is statistically significant and all factor loadings are more than 0.486. (see Table 4)

The results of CFA factor analysis of the research model are presented in Figure 1. They are presented as follow: P = 0.000; CFI = 0.915; TLI = 0.906; GFI = 0.822; RMSEA = 0.075. According to the conditions with P < 0.05; CFI, TLI, GFI  $\geq$  0.8 and RMSEA  $\leq$  0.08, they all meet the requirements. Considering the above conditions, the model is consistent with the market data.

All parameters are statistically significant with *P*-value < 0.05. According to the regression weight between factors shown, while Leadership positively affects Meeting Effectiveness with weight of 0.838, Meeting Effectiveness positively affects Organizational Commitment with weight of 0.296. Specifically, when Leadership goes up by 1 standard deviation, Meeting effectiveness goes up by 0.838 standard deviation and when Meeting effectiveness goes up by 1 standard deviation, Organizational Commitment goes up by 0.296 standard deviation. Similarly, with weight of 0.576, Meeting Effectiveness has a positive effect on Job Satisfaction and Job Satisfaction has the weight of 0.864 in the relationship with Organizational Commitment. (See Table 5 below).

Finally, in analysis of the moderating effect of JOB on MET and OCG, there is a significant total effect of Meeting effectiveness and Organizational commitment with *P*-value < 0.05 and its regression weight is 0.725 with bootstrap standard errors 0.055. It ranges from 0.651 lower bound to 0.809 upper bound. MET directly affects OGC with weight of 0.270 at bootstrap standard errors 0.067. Its lower bound and upper bound are 0.167 and 0.372 respectively. However, the indirect effect of Job satisfaction on the interaction between Meeting effectiveness and Organizational commitment is slightly higher at 0.454 with errors of 0.053. The 95% confidence interval for the indirect effect (0.035, 0.543) infers that the indirect effect of "Meeting effectiveness" on "Organizational commitment" is statistically significant. This is the evidence for Job satisfaction as a mediator (see Table 5).

Table 1: Descriptive Statistics

|                                                                                                                               | N   | Minimum | Maximum | Mean | Std.<br>Deviation |
|-------------------------------------------------------------------------------------------------------------------------------|-----|---------|---------|------|-------------------|
| OGC1. You have warm feelings toward this organization as a place to live and work.                                            | 249 | 1       | 5       | 3.74 | 0.856             |
| OGC2. You feel yourself to be part of the organization.                                                                       | 249 | 1       | 5       | 3.68 | 0.857             |
| OGC3. In your work, you like to feel you are making some effort, not just for yourself but for the organization as well.      | 249 | 1       | 5       | 3.90 | 0.792             |
| OGC4. You really feel as if this organization's problems are your problems.                                                   | 249 | 1       | 5       | 3.96 | 0.756             |
| OGC5. You feel a sense of pride working for this organization.                                                                | 249 | 1       | 5       | 3.85 | 0.804             |
| OGC6. In your work, you are willing to put in a great deal of effort beyond what is normally expected from you.               | 249 | 1       | 5       | 3.82 | 0.778             |
| OGC7. The offer of a bit more money with another employer would not seriously make me think of changing my job.               | 249 | 1       | 5       | 3.41 | 0.976             |
| LDS1. In the meeting, the leader will express the objective opinion with followers.                                           | 249 | 1       | 5       | 3.92 | 0.824             |
| LDS2. In the meeting, the leader will remain impartial rather than speaking out and expressing his/her views.                 | 249 | 1       | 5       | 3.88 | 0.882             |
| LDS3. In the meeting, the leader will express the non-<br>conservative opinion with followers.                                | 249 | 1       | 5       | 3.87 | 0.899             |
| LDS4. In the meeting, the leader will interact with followers-social distance is low.                                         | 249 | 1       | 5       | 3.90 | 0.821             |
| LDS5. In the meeting, the leader will support and encourage followers to express their ideas.                                 | 249 | 1       | 5       | 4.03 | 0.815             |
| LDS6. In the meeting, the leader will foster group goals.                                                                     | 249 | 1       | 5       | 4.16 | 0.770             |
| LDS7. In the meeting, the leader will communicate a high degree of confidence in the followers' ability to meet expectations. | 249 | 1       | 5       | 3.86 | 0.828             |
| LDS8. In the meeting, the leader will express high performance expectations for followers.                                    | 249 | 1       | 5       | 4.04 | 0.756             |
| LDS9. In the meeting, the leader provides recognition/rewards when others reach their goals.                                  | 249 | 1       | 5       | 3.83 | 0.840             |
| LDS10. In the meeting, the leader empowers his/her followers to make the final decision.                                      | 249 | 1       | 5       | 3.55 | 0.954             |
| MET01. When the meeting is finally over, you feel satisfied with the results.                                                 | 249 | 1       | 5       | 3.75 | 0.815             |
| MET02. The meeting states each problem with a clear solution.                                                                 | 249 | 1       | 5       | 3.76 | 0.835             |
| MET03. Most of conflicts raising in the meeting are solved satisfactorily.                                                    | 249 | 1       | 5       | 3.57 | 0.863             |
| MET04. After the meeting, you achieve your work goals.                                                                        | 249 | 1       | 5       | 3.94 | 0.793             |
| MET05. After the meeting, you get your leader's understanding about your difficulties.                                        | 249 | 1       | 5       | 3.63 | 0.893             |
| MET06. After the meeting, you receive your leader's instruction and sympathy with what you are fulfilling.                    | 249 | 1       | 5       | 3.73 | 0.855             |

Table 1: (Continued)

|                                                                                    | N   | Minimum | Maximum | Mean | Std.<br>Deviation |
|------------------------------------------------------------------------------------|-----|---------|---------|------|-------------------|
| MET07. The meeting provides you with an opportunity to acquire useful information. | 249 | 1       | 5       | 3.93 | 0.756             |
| JOB1. You feel fairly satisfied with your present job.                             | 249 | 1       | 5       | 3.69 | 0.727             |
| JOB2. Most days you are enthusiastic about your work.                              | 249 | 1       | 5       | 3.61 | 0.770             |
| JOB3. Each day at work seems like it will never end.                               | 249 | 1       | 5       | 3.59 | 0.783             |
| JOB4. You find real enjoyment at your work.                                        | 249 | 1       | 5       | 3.69 | 0.781             |
| Valid N (listwise).                                                                | 249 |         |         |      |                   |

Table 2: KMO and Bartlett's Test

| Kaiser-Meyer-Olkin<br>Adequacy. | 0.939    |       |
|---------------------------------|----------|-------|
| Bartlett's Test of              | 3656.950 |       |
| Sphericity Df                   |          | 210   |
|                                 | Sig.     | 0.000 |

#### 5. Discussion

In this study, it is found that leadership has a positive effect on meeting effectiveness. As the definition of leadership, it is referred as a process to influence organizational members to achieve their goals or results (Alonderiene & Majauskaite, 2016). In real organizational practices, meetings are led by meeting organizers or leaders who control them and make final decisions for any matters or conflicts occurring during the meeting. Apparently, whether meetings are effective or not depends on meeting organizers or leaders. As supposed by hypothesis 2 that meeting effectiveness will be positively related to job satisfaction, it definitely has a significant effect on job satisfaction. According to Burnfield et al. (2006), perceived meeting effectiveness has a strong and direct effect on subordinates' attitude and well-being. Meetings play the vital role to coordinate and integrate employee work activities and fulfill their interdependent tasks (Burnfield et al., 2006). The findings also show that job satisfaction has a positive influence on organizational commitment. From previous studies, the concept of employee commitment to organizations is defined in several ways and as reviewed by Mowday et.al. (1978), it is mainly related to subordinates' behaviors and attitude. That's why job satisfaction works as a predictor of organizational

Table 3: EFA Result – Rotated Component Matrix

|                |        | Componer | nt     |
|----------------|--------|----------|--------|
|                | 1      | 2        | 3      |
| LDS1           | 0.657  |          |        |
| LDS2           | 0.673  |          |        |
| LDS3           | 0.679  |          |        |
| LDS4           | 0.756  |          |        |
| LDS5           | 0.838  |          |        |
| LDS6           | 0.800  |          |        |
| LDS7           | 0.695  |          |        |
| LDS8           | 0.627  |          |        |
| LDS9           | 0.530  | 0.550    |        |
| LDS10          |        | 0.670    |        |
| MET01          |        | 0.648    |        |
| MET02          |        | 0.668    |        |
| MET03          |        | 0.680    |        |
| MET04          |        |          |        |
| MET05          |        | 0.709    |        |
| MET06          |        | 0.556    |        |
| MET07          |        |          |        |
| JOB1           |        |          | 0.825  |
| JOB2           |        |          | 0.837  |
| JOB3           |        |          | 0.759  |
| JOB4           |        |          | 0.819  |
| Eigenvalue     | 5.190  | 3.661    | 3.002  |
| Cumulative     | 64.872 | 61.014   | 75.043 |
| Cronbach Alpha | 0.922  | 0.863    | 0.888  |

commitment. With these interactive effects, job satisfaction mediates the relationship between meeting effectiveness and organizational commitment. To some extent, it is explained that whenever subordinates feel satisfied with their job through meetings, they will more commit to their organizations.

Table 4: KMO and Bartlett's Test

| Kaiser-Meyer-Olkin<br>Adequacy. | 0.887              |          |  |
|---------------------------------|--------------------|----------|--|
| Bartlett's Test of              | Approx. Chi-Square | 1201.707 |  |
| Sphericity                      | Df                 | 21       |  |
|                                 | Sig.               |          |  |

Table 5: Mediating with Regression Analysis

| Total Effect of MET on OGC    |                             |       |                |                |  |  |
|-------------------------------|-----------------------------|-------|----------------|----------------|--|--|
| Effect                        | se                          | P     | Lower<br>Bound | Upper<br>Bound |  |  |
| 0.725                         | 0.055                       | 0.004 | 0.651          | 0.809          |  |  |
|                               | Direct Effect of MET on OGC |       |                |                |  |  |
| Effect                        | se                          | Р     | Lower<br>Bound | Upper<br>Bound |  |  |
| 0.270                         | 0.067                       | 0.011 | 0.167          | 0.372          |  |  |
| Indirect Effect of MET on OGC |                             |       |                |                |  |  |
| Effect                        | BootSE                      | 0.005 | 0.375          | 0.543          |  |  |
| 0.454                         | 0.053                       |       |                |                |  |  |

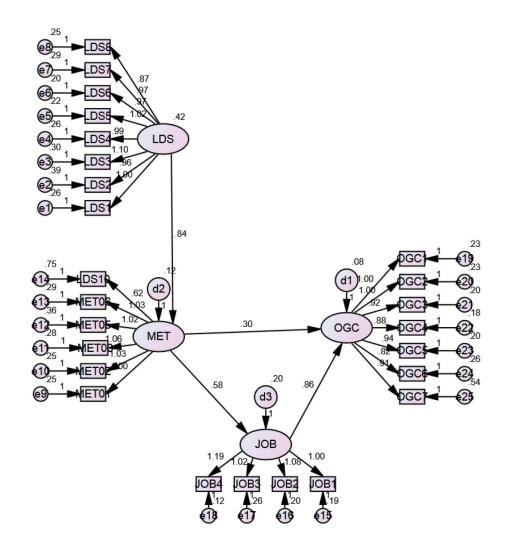



Figure 1: Results of CFA Concepts of Research Model (Standardized)

#### 6. Conclusion

The findings show three factors having an impact on organizational commitment. It emphasizes the importance of meetings in workplaces. In order to make subordinates satisfied with their job, every conflict or problem needs to be thoroughly resolved in meetings. That's why meeting effectiveness has a significant effect on job satisfaction. Furthermore, whether meetings are effective or not is based on leaders or meeting organizers. Thus, leadership has a positive role to play for meeting effectiveness with weight of 0.838. Previous studies have confirmed that highly committed employees may perform better than less committed ones (Steers, 1977). Obviously, if employees feel satisfied with their job, they become more committed to their organization. From the above-mentioned, it is evident that meetings effectiveness positively affects organizational commitment with weight of 0.296. Last but not the least, in the relationship between meeting effectiveness and organizational commitment, there is a mediator of job satisfaction with the indirect effect of 0.454 and its bootstrap errors at 0.053.

#### References

- Alegre, I., Machuca, M. M., & Mirabent, J. B. (2015). Antecedents of employee job satisfaction: Do they matter? *Journal of Business Research*. https://doi.org/10.1016/j.jbusres.2015.10.113
- Allen, J. A. (2012). Employees' feelings about more meetings. *Management Research Review*, 35(5). https://doi. org/10.1108/01409171211222331
- Allen, J. A., Willenbrock, N. L., & Landowski, N. (2014). Linking pre-meeting communication to meeting effectiveness. *Journal* of Managerial Psychology, 29, 1064–1081. https://doi.org/ 10.1108/jmp-09-2012-0265
- Alonderiene, R., & Majauskaite, M. (2016). Leadership style and job satisfaction in higher education institutions *International Journal of Educational Management*, 30(1), 140–164. https://doi.org/10.1108/ijem-08-2014-0106
- Andersen, J. A. (2006). Leadership, personality and effectiveness The Journal of Socio-Economics, 35. https://doi.org/10.1016/j. socec.2005.11.066
- Bagire, V., Byarugaba, J., & Kyogabiirwe, J. (2015). Organizational meetings: management and benefits *Journal of Management Development*, 34(8), 960–972. https://doi.org/10.1108/jmd-03-2014-0023
- Baker, H. (2010). Writing Meeting Minutes and Agenda. Lancashire, UK: Universe of Learning Ltd.
- Bass, B. M., & Riggio, R. E. (2006). Transformational Leadership. London: Lawrence Erlbaum Associates, Inc. https://doi. org/10.4324/9781410617095
- Bowen, M., Morara, M., & Mureithi, S. (2009). Management of Business Challenges among Small and Mircro enterprises in Nairobi-Kenya. *KCA Journal of Business Management*, 2(1). https://doi.org/10.4314/kjbm.v2i1.44408

- Buchanan, B. (1974). Building Organizational Commitment: The Socialization of Managers in Work Organizations *Administrative Science Quarterly*, 19(4), 533–546. https://doi.org/10.2307/2391809
- Bui, T. Q., Nguyen, N. T., Nguyen, K. K., & Tran, T. T. (2021). Antecedents Affecting Purchase Intention of Green Skincare Products: A Case Study in Vietnam. *The Journal of Asian Finance, Economics and Business*, 8(3), 1295–1302. https://doi.org/10.13106/jafeb.2021.vol8.no3.1295
- Burnfield, J. L., Steven, G., Rogelberg, S. G., Leach, D. J., & Warr, P. B. (2006). "Not Another Meeting!" Are Meeting Time Demands Related to Employee Well-Being? *Journal of Applied Psychology*, *91*(1), 86–96. https://doi.org/10.1037/0021-9010.91.1.83
- Cao, M. M., Nguyen, N. T., & Tran, T. T. (2021). Behavioral Factors on Individual Investors' Decision Making and Investment Performance: A Survey from the Vietnam Stock Market. *The Journal of Asian Finance, Economics and Business*, 8(3), 845–853. https://doi.org/10.13106/jafeb.2021.vol8.no3.0845
- Cook, J., & Wall, T. (1980). New work attitude measures of trust, organizational commitment and personal need non-fulfilment. *Journal of Occupational Psychology*, *53*, 39–52. https://doi.org/10.1111/j.2044-8325.1980.tb00005.x
- Esquivel, M. A., & Kleiner, B. H. (1996). The importance of conflict in work team effectiveness *Team Performance Management: An International Journal*, 2(3), 42–48. https://doi.org/10.1108/13527599610126265
- Fry, L. W., Matherly, L. L., Whittington, J. L., & Winston, B. E. (2007). Spiritual Leadership as an Integrating Paradigm for Servant Leadership. *Integrating Spirituality and Organizational Leadership*. https://doi.org/10.1057/978-1-137-60194-0 7
- Gautam, T., Dick, R. V., & Wagner, U. (2004). Organizational identification and organizational commitment: Distinct aspects of two related concepts. *Asian Journal of Social Psychology*, 7, 301–315. https://doi.org/10.1111/j.1467-839x.2004.00150.x
- Guest, D. E. (2010). Human resource management: when research confronts theory. The International Journal of Human Resource Management, 12(7).https://doi.org/10.1080/09585190110067837
- Guetzkow, H., & Gyr, J. (1954). An Analysis of Conflict in Decision-Making Groups. *Human Relations*, 7(3), 367–382. https://doi.org/10.1177/001872675400700307
- Hopkins, W. E., & Hopkins, S. A. (1998). Diversity Leadership: A mandate for the 21st Century Workforce. The Journal of Leadership Studies, 5(3). https://doi.org/ 10.1177/107179199900500311
- Hornsby, J. S., & Kuratko, D. F. (1990). Human resource management in small business. *Journal of Small Business Management*, 28(3).
- Jarzabkowski, P., & Seidl, D. (2008). The Role of Meetings in the Social Practice of Strategy. *Organization Studies*, 29(11), 1391–1426. https://doi.org/10.1177/0170840608096388
- Johl, S. K., Kaur, S., & Cooper, B. J. (2015). Board characteristics and firm performance: Evidence from Malaysian public listed firms. *Journal of Economics, Business and Management*, *3*(2), 239–243. https://doi.org/10.7763/joebm.2015.v3.187

- Judge, T. A., & Bono, J. E. (2000). Five-Factor Model of Personality and Transformational Leadership. *Journal of Applied Psychology*, 85(5), 751–765. https://doi.org/10.1037/0021-9010.85.5.751
- Judge, T. A., & Klinger, R. (2008). Job Satisfaction Subjective Well-Being at Work. *International Journal of Public Administration*, 40(1), 77–88. https://doi.org/10.1080/019006 92.2015.1072217
- Kirkpatrick, S. A., & Locke, E. A. (1991). Leadership: Do traits matters? *Academy of Management Executive*, 5(2). https://doi. org/10.5465/ame.1991.4274679
- Lestari, S. D., Leon, F. M., Widyastuti, S., Brabo, N. A., & Putra, A. H. P. K. (2020). Antecedents and consequences of innovation and business strategy on performance and competitive advantage of SMEs. *The Journal of Asian Finance, Economics, and Business*, 7(6), 365–378. https://doi.org/10.13106/jafeb.2020.vol7.no6.365
- Lu, L., Lu, A. C. C., Gursoy, D., & Neale, N. R. (2016). Work engagement, job satisfaction, and turnover intentions *International Journal of Contemporary Hospitality Management*, 28(4). https://doi.org/10.1108/ijchm-07-2014-0360
- Lussier, R. N., & Pfeifer, S. (2001). A Crossnational Predition Model for Business Success. *Journal of Small Business Management*, 39(3), 228–239. https://doi.org/10.1111/0447-2778.00021
- Marjosola, I. A., & Takala, T. (2000). Charismatic leadership, manipulation and the complexity of organizational life. *Journal of Workplace Learning*. https://doi. org/10.1108/13665620010332750
- Masadeh, R., Almajali, D. A., Alrowwad, A., & Obeidat, B. (2019). The role of knowledge management infrastructure in enhancing job satisfaction: A developing country perspective. *Interdisciplinary Journal of Information, Knowledge, and Management*, 4. https://doi.org/10.28945/4169
- Meinecke, A. L., & Lehmann-Willenbrock, N. (n.d.). Social Dynamics at Work: Meetings as a Gateway. *The Cambridge Handbook of Meeting Science*, 325–356. https://doi.org/10.1017/cbo9781107589735.015
- Men, L. R. (2014). Strategic Internal Communication: Transformational Leadership, Communication Channels, and Employee Satisfaction. *Management Communication Quarterly*, 28(2), 264–284. https://doi.org/10.1177/0893318914524536
- Men, L. R. (2014). Why Leadership Matters to Internal Communication: Linking Transformational Leadership, Symmetrical Communication, and Employee Outcomes. *Journal of Public Relations Research*, 26, 256–279. https://doi. org/10.1080/1062726x.2014.908719
- Mowday, R. T., Steers, R. M., & Porter, L. W. (1978). The measurement of Organizational Commitment: A progress report. *Technical report*. https://doi.org/10.1037/t08840-000
- Nicholas, C. R., & Jay, F. N. (2001). Meeting Analysis: Findings from Research and Practice. https://doi.org/10.1109/ hicss.2001.926253
- Nixon, C. T., & Littlepage, G. L. (2014). Impact of meeting procedures on meeting effectiveness. *Journal of Business*

- and Psychology, 6, 361–369. https://doi.org/10.1007/bf01126771
- Nguyen, N. T. (2021). The Influence of Celebrity Endorsement on Young Vietnamese Consumers' Purchasing Intention. (2021). *The Journal of Asian Finance, Economics, and Business,* 8(1), 951–960. https://doi.org/10.13106/JAFEB.2021.VOL8. NO1.951
- Nguyen, M. T., & Khoa, B. T. (2020). Improving the Competitiveness of Exporting Enterprises: A Case of Kien Giang Province in Vietnam. *The Journal of Asian Finance, Economics, and Business*, 7(6), 495–508. https://doi.org/10.13106/jafeb.2020.vol7.no6.495
- Nguyen, N. T., Nguyen, L. H. A., & Tran, T. T. (2021). Purchase Behavior of Young Consumers Toward Green Packaged Products in Vietnam. (2021). *The Journal of Asian Finance, Economics, and Business, 8*(1), 985–996. https://doi.org/10.13106/JAFEB.2021.VOL8.NO1.985
- Pattiruhu, J. R., & Paais, M. (2020). Effect of liquidity, profitability, leverage, and firm size on dividend policy. *The Journal of Asian Finance, Economics, and Business*, 7(10), 35–42. https://doi.org/10.13106/jafeb.2020.vol7.no10.035
- Reichers, A. E. (1985). A Review and Reconceptualization of Organizational Commitment *The Academy of Management Review*, 10(3), 465–476. https://doi.org/10.5465/amr.1985.4278960
- Rogelberg, S. G., Leach, D. J., Warr, P. B., & Burnfield, J. L. (2006). "Not Another Meeting!" Are Meeting Time Demands Related to Employee Well-Being? *Journal of Applied Psychology*, 91(1), 86–96. https://doi.org/10.1037/0021-9010.91.1.83
- Rustamasji. (2018). The effect of strategic management and organizational commitment on employees' work achievement. *Management Science Letters*, 9. https://doi.org/10.5267/j. msl.2018.12.009
- Simola, S., Barling, J., & Turner, N. (2012). Transformational leadership and Leader's Mode of Care Reasoning *Journal of Business Ethics*, 229–237. https://doi.org/10.1007/s10551-011-1080-x
- Steel, P., Schmidt, J., Bosco, F., & Uggerslev, K. (2018). The effects of personality on job satisfaction and life satisfaction: A metaanalytic investigation accounting for bandwidth–fidelity and commensurability. *Human Relations*, 72(2), 217–247. https:// doi.org/10.1177/0018726718771465
- Steers, R. M. (1977). Antecedents and Outcomes of Organizational Commitment Administrative Science Quarterly, 22(1), 46–56. https://doi.org/10.2307/2391745
- Volkema, R. J., & Fred Niederman, F. (1996). Planning and Managing Organizational Meetings: An Empirical Analysis of Written and Oral Communications *The Journal of Business Communication*, 33, 275–296. https://doi.org/10.1177/002194369603300304
- Yousef, D. A. (2017). Organizational Commitment, Job Satisfaction and Attitudes toward Organizational Change: A Study in the Local Government. *International Journal of Public Administration*, 40(1), 77–88. https://doi.org/10.1080/019006 92.2015.1072217

## APPENDIX 2 - DETERMINANTS TO GAIN MORE EFFECTIVE MEETINGS IN THE CONTEXT OF VIETNAMESE ORGANIZATION

#### **Descriptives**

**Descriptive Statistics** 

|                    | N   | Minimum | Maximum | Mean | Std. Deviation |
|--------------------|-----|---------|---------|------|----------------|
|                    |     |         |         |      |                |
| LDS1               | 249 | 1       | 5       | 3.92 | .824           |
| LDS2               | 249 | 1       | 5       | 3.88 | .882           |
| LDS3               | 249 | 1       | 5       | 3.87 | .899           |
| LDS5               | 249 | 1       | 5       | 4.03 | .815           |
| LDS6               | 249 | 1       | 5       | 4.16 | .770           |
| LDS7               | 249 | 1       | 5       | 3.86 | .828           |
| LDS8               | 249 | 1       | 5       | 4.04 | .756           |
| LDS9               | 249 | 1       | 5       | 3.83 | .840           |
| IC01               | 249 | 1       | 5       | 3.81 | .843           |
| IC02               | 249 | 1       | 5       | 3.77 | .834           |
| IC03               | 249 | 1       | 5       | 3.82 | .849           |
| IC04               | 249 | 1       | 5       | 3.76 | .840           |
| AGEN3              | 249 | 1       | 5       | 4.01 | .950           |
| AGEN4              | 249 | 1       | 5       | 3.79 | .791           |
| AGEN6              | 249 | 1       | 5       | 3.86 | .866           |
| MET01              | 249 | 1       | 5       | 3.75 | .815           |
| MET02              | 249 | 1       | 5       | 3.76 | .835           |
| MET03              | 249 | 1       | 5       | 3.57 | .863           |
| MET04              | 249 | 1       | 5       | 3.94 | .793           |
| MET05              | 249 | 1       | 5       | 3.63 | .893           |
| MET06              | 249 | 1       | 5       | 3.73 | .855           |
| MET07              | 249 | 1       | 5       | 3.93 | .756           |
| Valid N (listwise) | 249 |         |         |      |                |

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .912             | 7          |

**Item Statistics** 

|       | Mean | Std. Deviation | N   |
|-------|------|----------------|-----|
| MET01 | 3.75 | .815           | 249 |
| MET02 | 3.76 | .835           | 249 |
| MET03 | 3.57 | .863           | 249 |
| MET04 | 3.94 | .793           | 249 |
| MET05 | 3.63 | .893           | 249 |
| MET06 | 3.73 | .855           | 249 |

| MET07 | 3.93 | .756 | 249 |
|-------|------|------|-----|

#### **Item-Total Statistics**

|       | Scale Mean if | Scale Variance if | Corrected Item-   | Cronbach's Alpha |
|-------|---------------|-------------------|-------------------|------------------|
|       | Item Deleted  | Item Deleted      | Total Correlation | if Item Deleted  |
| MET01 | 22.57         | 16.617            | .736              | .899             |
| MET02 | 22.56         | 16.401            | .750              | .897             |
| MET03 | 22.75         | 16.246            | .744              | .898             |
| MET04 | 22.38         | 16.616            | .761              | .896             |
| MET05 | 22.69         | 16.240            | .713              | .902             |
| MET06 | 22.59         | 16.331            | .739              | .898             |
| MET07 | 22.39         | 17.239            | .694              | .903             |

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 26.32 | 22.171   | 4.709          | 7          |

RELIABILITY

/VARIABLES=LDS1 LDS2 LDS3 LDS5 LDS6 LDS7 LDS8 LDS9

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE

/SUMMARY=TOTAL.

#### Reliability

#### Notes

|                        | Notes                          |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 04-MAR-2023 12:22:59                         |
| Comments               |                                |                                              |
| Input                  | Data                           | E:\LY DAN THANH\1-LUANAN_BAOVE               |
|                        |                                | CAPCOSO\Raw-Data-spss_PB3.sav                |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
|                        | Matrix Input                   |                                              |
| Missing Value Handling | Definition of Missing          | User-defined missing values are treated as   |
|                        |                                | missing.                                     |
|                        | Cases Used                     | Statistics are based on all cases with valid |
|                        |                                | data for all variables in the procedure.     |

| Syntax    |                | RELIABILITY                    |
|-----------|----------------|--------------------------------|
|           |                | /VARIABLES=LDS1 LDS2 LDS3 LDS5 |
|           |                | LDS6 LDS7 LDS8 LDS9            |
|           |                | /SCALE('ALL VARIABLES') ALL    |
|           |                | /MODEL=ALPHA                   |
|           |                | /STATISTICS=DESCRIPTIVE SCALE  |
|           |                | /SUMMARY=TOTAL.                |
| Resources | Processor Time | 00:00:00.02                    |
|           | Elapsed Time   | 00:00:00.01                    |

**Scale: ALL VARIABLES** 

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .917             | 8          |

#### **Item Statistics**

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| LDS1 | 3.92 | .824           | 249 |
| LDS2 | 3.88 | .882           | 249 |
| LDS3 | 3.87 | .899           | 249 |
| LDS5 | 4.03 | .815           | 249 |
| LDS6 | 4.16 | .770           | 249 |
| LDS7 | 3.86 | .828           | 249 |
| LDS8 | 4.04 | .756           | 249 |
| LDS9 | 3.83 | .840           | 249 |

#### **Item-Total Statistics**

|      | Scale Mean if | Scale Variance if | Corrected Item-   | Cronbach's Alpha |
|------|---------------|-------------------|-------------------|------------------|
|      | Item Deleted  | Item Deleted      | Total Correlation | if Item Deleted  |
| LDS1 | 27.66         | 21.274            | .760              | .903             |

| LDS2 | 27.70 | 21.436 | .675 | .910 |
|------|-------|--------|------|------|
| LDS3 | 27.71 | 20.763 | .751 | .904 |
| LDS5 | 27.55 | 21.289 | .768 | .902 |
| LDS6 | 27.42 | 21.696 | .759 | .904 |
| LDS7 | 27.72 | 21.461 | .727 | .906 |
| LDS8 | 27.54 | 22.177 | .700 | .908 |
| LDS9 | 27.75 | 21.762 | .671 | .910 |

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 31.58 | 27.729   | 5.266          | 8          |

RELIABILITY

/VARIABLES=IC01 IC02 IC03 IC04 /SCALE('ALL VARIABLES') ALL /MODEL=ALPHA /STATISTICS=DESCRIPTIVE SCALE /SUMMARY=TOTAL.

#### Reliability

#### Notes

| Output Created         |                                | 04-MAR-2023 12:23:28                         |
|------------------------|--------------------------------|----------------------------------------------|
| Comments               |                                |                                              |
| Input                  | Data                           | E:\LY DAN THANH\1-LUANAN_BAOVE               |
|                        |                                | CAPCOSO\Raw-Data-spss_PB3.sav                |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
|                        | Matrix Input                   |                                              |
| Missing Value Handling | Definition of Missing          | User-defined missing values are treated as   |
|                        |                                | missing.                                     |
|                        | Cases Used                     | Statistics are based on all cases with valid |
|                        |                                | data for all variables in the procedure.     |
| Syntax                 |                                | RELIABILITY                                  |
|                        |                                | /VARIABLES=IC01 IC02 IC03 IC04               |
|                        |                                | /SCALE('ALL VARIABLES') ALL                  |
|                        |                                | /MODEL=ALPHA                                 |
|                        |                                | /STATISTICS=DESCRIPTIVE SCALE                |
|                        |                                | /SUMMARY=TOTAL.                              |

| Resources | Processor Time | 00:00:00.03 |
|-----------|----------------|-------------|
|           | Elapsed Time   | 00:00:00.02 |

**Scale: ALL VARIABLES** 

**Case Processing Summary** 

| Gass : recessing Gamma |           |     |       |
|------------------------|-----------|-----|-------|
|                        |           | N   | %     |
| Cases                  | Valid     | 249 | 100.0 |
|                        | Excludeda | 0   | .0    |
|                        | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |  |
|------------------|------------|--|
| .890             | 4          |  |

**Item Statistics** 

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| IC01 | 3.81 | .843           | 249 |
| IC02 | 3.77 | .834           | 249 |
| IC03 | 3.82 | .849           | 249 |
| IC04 | 3.76 | .840           | 249 |

**Item-Total Statistics** 

|      | Scale Mean if | Scale Variance if<br>Item Deleted | Corrected Item-<br>Total Correlation | Cronbach's Alpha |
|------|---------------|-----------------------------------|--------------------------------------|------------------|
| IC01 | 11.35         | 5.107                             | .710                                 | .877             |
| IC02 | 11.39         | 5.006                             | .756                                 | .860             |
| IC03 | 11.34         | 4.750                             | .824                                 | .833             |
| IC04 | 11.40         | 5.015                             | .745                                 | .864             |

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 15.16 | 8.522    | 2.919          | 4          |

RELIABILITY

/VARIABLES=AGEN3 AGEN4 AGEN6 /SCALE('ALL VARIABLES') ALL /MODEL=ALPHA /STATISTICS=DESCRIPTIVE SCALE /SUMMARY=TOTAL.

#### Reliability

#### Notes

|                        | Mores                          |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 04-MAR-2023 12:24:05                         |
| Comments               |                                |                                              |
| Input                  | Data                           | E:\LY DAN THANH\1-LUANAN_BAOVE               |
|                        |                                | CAPCOSO\Raw-Data-spss_PB3.sav                |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
|                        | Matrix Input                   |                                              |
| Missing Value Handling | Definition of Missing          | User-defined missing values are treated as   |
|                        |                                | missing.                                     |
|                        | Cases Used                     | Statistics are based on all cases with valid |
|                        |                                | data for all variables in the procedure.     |
| Syntax                 |                                | RELIABILITY                                  |
|                        |                                | /VARIABLES=AGEN3 AGEN4 AGEN6                 |
|                        |                                | /SCALE('ALL VARIABLES') ALL                  |
|                        |                                | /MODEL=ALPHA                                 |
|                        |                                | /STATISTICS=DESCRIPTIVE SCALE                |
|                        |                                | /SUMMARY=TOTAL.                              |
| Resources              | Processor Time                 | 00:00:00.05                                  |
|                        | Elapsed Time                   | 00:00:00.07                                  |

**Scale: ALL VARIABLES** 

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .751             | 3          |

#### **Item Statistics**

|       | Mean | Std. Deviation | N   |
|-------|------|----------------|-----|
| AGEN3 | 4.01 | .950           | 249 |
| AGEN4 | 3.79 | .791           | 249 |
| AGEN6 | 3.86 | .866           | 249 |

#### **Item-Total Statistics**

|       | Scale Mean if | Scale Variance if | Corrected Item-   | Cronbach's Alpha |
|-------|---------------|-------------------|-------------------|------------------|
|       | Item Deleted  | Item Deleted      | Total Correlation | if Item Deleted  |
| AGEN3 | 7.65          | 2.027             | .604              | .642             |
| AGEN4 | 7.87          | 2.527             | .562              | .691             |
| AGEN6 | 7.80          | 2.290             | .581              | .665             |

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 11.66 | 4.564    | 2.136          | 3          |

#### **Factor Analysis**

#### KMO and Bartlett's Test

| Kaiser-Meyer-Olkin Measure o  | .917               |          |
|-------------------------------|--------------------|----------|
| Bartlett's Test of Sphericity | Approx. Chi-Square | 2450.774 |
|                               | df                 | 105      |

Sig. .000

Communalities

|       |         | Extractio |
|-------|---------|-----------|
|       | Initial | n         |
| LDS1  | 1.000   | .684      |
| LDS2  | 1.000   | .569      |
| LDS3  | 1.000   | .658      |
| LDS5  | 1.000   | .685      |
| LDS6  | 1.000   | .665      |
| LDS7  | 1.000   | .653      |
| LDS8  | 1.000   | .603      |
| LDS9  | 1.000   | .608      |
| IC01  | 1.000   | .671      |
| IC02  | 1.000   | .746      |
| IC03  | 1.000   | .849      |
| IC04  | 1.000   | .788      |
| AGEN3 | 1.000   | .749      |
| AGEN4 | 1.000   | .592      |
| AGEN6 | 1.000   | .692      |

Extraction Method: Principal

Component Analysis.

**Total Variance Explained** 

| rotal variance Explained |       |                   |            |                            |          |            |            |            |               |
|--------------------------|-------|-------------------|------------|----------------------------|----------|------------|------------|------------|---------------|
|                          |       |                   |            | Extraction Sums of Squared |          |            |            |            |               |
|                          |       | Initial Eigenvalu | ies        |                            | Loading  | S          | Rotation S | ums of Squ | ared Loadings |
|                          |       | % of              | Cumulative |                            | % of     | Cumulative |            | % of       | Cumulative    |
| Component                | Total | Variance          | %          | Total                      | Variance | %          | Total      | Variance   | %             |
| 1                        | 8.037 | 53.579            | 53.579     | 8.037                      | 53.579   | 53.579     | 4.711      | 31.406     | 31.406        |
| 2                        | 1.166 | 7.770             | 61.350     | 1.166                      | 7.770    | 61.350     | 3.179      | 21.192     | 52.598        |
| 3                        | 1.009 | 6.729             | 68.079     | 1.009                      | 6.729    | 68.079     | 2.322      | 15.481     | 68.079        |
| 4                        | .756  | 5.040             | 73.119     |                            |          |            |            |            |               |
| 5                        | .679  | 4.525             | 77.644     |                            |          |            |            |            |               |
| 6                        | .536  | 3.574             | 81.218     |                            |          |            |            |            |               |
| 7                        | .509  | 3.392             | 84.610     |                            |          |            |            |            |               |
| 8                        | .425  | 2.835             | 87.445     |                            |          |            |            |            |               |
| 9                        | .387  | 2.578             | 90.023     |                            |          |            |            |            |               |
| 10                       | .371  | 2.472             | 92.496     |                            |          |            |            |            |               |
| 11                       | .318  | 2.118             | 94.613     |                            |          |            |            |            |               |
| 12                       | .250  | 1.670             | 96.283     |                            |          |            |            |            |               |
| 13                       | .208  | 1.389             | 97.672     |                            |          |            |            |            |               |
| 14                       | .194  | 1.296             | 98.968     |                            |          |            |            |            |               |

|    |      | 1     |         |  |  |  |
|----|------|-------|---------|--|--|--|
| 15 | .155 | 1.032 | 100.000 |  |  |  |

Extraction Method: Principal Component Analysis.

#### **Component Matrix**<sup>a</sup>

|       | Component |      |   |  |  |  |  |
|-------|-----------|------|---|--|--|--|--|
|       | 1         | 2    | 3 |  |  |  |  |
| LDS1  | .818      |      |   |  |  |  |  |
| LDS6  | .796      |      |   |  |  |  |  |
| LDS5  | .792      |      |   |  |  |  |  |
| LDS3  | .786      |      |   |  |  |  |  |
| IC01  | .774      |      |   |  |  |  |  |
| IC03  | .763      |      |   |  |  |  |  |
| LDS7  | .757      |      |   |  |  |  |  |
| LDS8  | .745      |      |   |  |  |  |  |
| IC02  | .736      |      |   |  |  |  |  |
| IC04  | .727      |      |   |  |  |  |  |
| LDS2  | .712      |      |   |  |  |  |  |
| LDS9  | .708      |      |   |  |  |  |  |
| AGEN4 | .644      |      |   |  |  |  |  |
| AGEN6 | .629      |      |   |  |  |  |  |
| AGEN3 | .541      | .503 |   |  |  |  |  |

Extraction Method: Principal Component Analysis.

Rotated Component Matrix<sup>a</sup>

|       | Component |      |      |  |  |  |
|-------|-----------|------|------|--|--|--|
|       | 1         | 2    | 3    |  |  |  |
| LDS7  | .737      |      |      |  |  |  |
| LDS5  | .733      |      |      |  |  |  |
| LDS9  | .714      |      |      |  |  |  |
| LDS3  | .705      |      |      |  |  |  |
| LDS6  | .700      |      |      |  |  |  |
| LDS8  | .689      |      |      |  |  |  |
| LDS2  | .688      |      |      |  |  |  |
| LDS1  | .676      |      |      |  |  |  |
| IC03  |           | .848 |      |  |  |  |
| IC04  |           | .823 |      |  |  |  |
| IC02  |           | .763 |      |  |  |  |
| IC01  |           | .633 |      |  |  |  |
| AGEN3 |           |      | .835 |  |  |  |
| AGEN6 |           |      | .750 |  |  |  |
| AGEN4 |           |      | .647 |  |  |  |

a. 3 components extracted.

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

**Component Transformation Matrix** 

| Component | 1    | 2    | 3    |
|-----------|------|------|------|
| 1         | .726 | .547 | .418 |
| 2         | .067 | 660  | .748 |
| 3         | 685  | .515 | .516 |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure    | .902     |      |
|-------------------------------|----------|------|
| Bartlett's Test of Sphericity | 1048.802 |      |
|                               | Df       | 21   |
|                               | Sig.     | .000 |

Communalities

|       | Initial | Extraction |
|-------|---------|------------|
| MET01 | 1.000   | .661       |
| MET02 | 1.000   | .680       |
| МЕТ03 | 1.000   | .667       |
| MET04 | 1.000   | .694       |
| MET05 | 1.000   | .626       |
| MET06 | 1.000   | .661       |
| MET07 | 1.000   | .606       |

Extraction Method: Principal

Component Analysis.

**Total Variance Explained** 

| i otal variance Explained |       |                   |              |                                     |               |              |  |  |  |
|---------------------------|-------|-------------------|--------------|-------------------------------------|---------------|--------------|--|--|--|
| -                         |       | Initial Eigenvalu | ies          | Extraction Sums of Squared Loadings |               |              |  |  |  |
| Component                 | Total | % of Variance     | Cumulative % | Total                               | % of Variance | Cumulative % |  |  |  |
| 1                         | 4.595 | 65.645            | 65.645       | 4.595                               | 65.645        | 65.645       |  |  |  |
| 2                         | .607  | 8.674             | 74.319       |                                     |               |              |  |  |  |
| 3                         | .544  | 7.764             | 82.083       |                                     |               |              |  |  |  |
| 4                         | .390  | 5.569             | 87.652       |                                     |               |              |  |  |  |
| 5                         | .333  | 4.755             | 92.407       |                                     |               |              |  |  |  |
| 6                         | .289  | 4.128             | 96.535       |                                     |               |              |  |  |  |
| 7                         | .243  | 3.465             | 100.000      |                                     |               |              |  |  |  |

Extraction Method: Principal Component Analysis.

Component Matrix<sup>a</sup>

|       | Component |  |  |  |
|-------|-----------|--|--|--|
|       | 1         |  |  |  |
| MET04 | .833      |  |  |  |
| MET02 | .824      |  |  |  |
| MET03 | .816      |  |  |  |
| MET06 | .813      |  |  |  |
| MET01 | .813      |  |  |  |
| MET05 | .791      |  |  |  |
| MET07 | .778      |  |  |  |

Extraction Method:

Principal Component

Analysis.

a. 1 components

extracted.

Rotated

Componen

t Matrix<sup>a</sup>



a. Only one

component

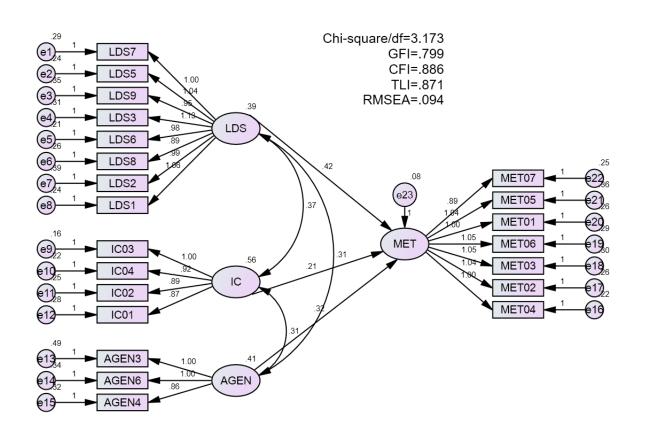
was

extracted.

The solution

cannot be

rotated.


## $Regression\ Weights:\ (Group\ number\ 1\ -\ Default\ model)$

|      |        | Estimate | S.E. | C.R.   | P   | Label |
|------|--------|----------|------|--------|-----|-------|
| MET  | < LDS  | .417     | .102 | 4.103  | *** |       |
| MET  | < IC   | .214     | .064 | 3.350  | *** |       |
| MET  | < AGEN | .316     | .085 | 3.739  | *** |       |
| LDS7 | < LDS  | 1.000    |      |        |     |       |
| LDS5 | < LDS  | 1.044    | .079 | 13.194 | *** |       |
| LDS9 | < LDS  | .951     | .083 | 11.460 | *** |       |
| LDS3 | < LDS  | 1.133    | .088 | 12.943 | *** |       |
| LDS6 | < LDS  | .985     | .075 | 13.187 | *** |       |
| LDS8 | < LDS  | .894     | .074 | 12.056 | *** |       |
| LDS2 | < LDS  | .994     | .087 | 11.396 | *** |       |
| LDS1 | < LDS  | 1.060    | .080 | 13.266 | *** |       |

|       |   |      | Estimate | S.E. | C.R.   | P   | Label |
|-------|---|------|----------|------|--------|-----|-------|
| IC03  | < | IC   | 1.000    |      |        |     |       |
| IC04  | < | IC   | .924     | .056 | 16.602 | *** |       |
| IC02  | < | IC   | .892     | .056 | 15.812 | *** |       |
| IC01  | < | IC   | .873     | .058 | 15.016 | *** |       |
| AGEN3 | < | AGEN | 1.000    |      |        |     |       |
| AGEN6 | < | AGEN | .997     | .105 | 9.522  | *** |       |
| AGEN4 | < | AGEN | .862     | .094 | 9.153  | *** |       |
| MET04 | < | MET  | 1.000    |      |        |     |       |
| MET02 | < | MET  | 1.039    | .074 | 13.985 | *** |       |
| MET03 | < | MET  | 1.049    | .077 | 13.543 | *** |       |
| MET06 | < | MET  | 1.047    | .077 | 13.681 | *** |       |
| MET01 | < | MET  | 1.004    | .073 | 13.801 | *** |       |
| MET05 | < | MET  | 1.040    | .081 | 12.819 | *** |       |

Standardized Regression Weights: (Group number 1 - Default model)

|       |   |             | Estimate |
|-------|---|-------------|----------|
| MET   | < | LDS         | .410     |
| MET   | < | IC          | .253     |
| MET   | < | AGEN        | .321     |
| LDS7  | < | LDS         | .756     |
| LDS5  | < | LDS         | .801     |
| LDS9  | < | LDS         | .708     |
| LDS3  | < | LDS         | .788     |
| LDS6  | < | LDS         | .801     |
| LDS8  | < | LDS         | .741     |
| LDS2  | < | LDS         | .705     |
| LDS1  | < | LDS         | .805     |
| IC03  | < | IC          | .882     |
| IC04  | < | IC          | .825     |
| IC02  | < | IC          | .801     |
| IC01  | < | IC          | .776     |
| AGEN3 | < | AGEN        | .678     |
| AGEN6 | < | <b>AGEN</b> | .742     |
| AGEN4 | < | <b>AGEN</b> | .703     |
| MET04 | < | MET         | .801     |
| MET02 | < | MET         | .791     |
| MET03 | < | MET         | .772     |
| MET06 | < | MET         | .778     |
| MET01 | < | MET         | .783     |
| MET05 | < | MET         | .741     |
| MET07 | < | MET         | .752     |



# APPENDIX 3 – CRITICAL FACTORS FOR ORGANIZATIONAL COMMITMENT: AN EMPIRICAL STUDY IN VIETNAM

## **Descriptives**

#### Notes

| Output Created         |                                | 30-JAN-2020 13:41:48                       |
|------------------------|--------------------------------|--------------------------------------------|
| Comments               |                                |                                            |
| Input                  | Data                           | D:\LU'U TAM\270120\FINAL-DATA              |
|                        |                                | SPSS.sav                                   |
|                        | Active Dataset                 | DataSet1                                   |
|                        | Filter                         | <none></none>                              |
|                        | Weight                         | <none></none>                              |
|                        | Split File                     | <none></none>                              |
|                        | N of Rows in Working Data File | 249                                        |
| Missing Value Handling | Definition of Missing          | User defined missing values are treated as |
|                        |                                | missing.                                   |
|                        | Cases Used                     | All non-missing data are used.             |
| Syntax                 |                                | DESCRIPTIVES VARIABLES=LDS1 LDS2           |
|                        |                                | LDS3 LDS4 LDS5 LDS6 LDS7 LDS8 LDS9         |
|                        |                                | MET01 MET02 MET03 MET04 MET05              |
|                        |                                | MET06 MET07 JOB1 JOB2 JOB3 JOB4            |
|                        |                                | /STATISTICS=MEAN STDDEV MIN MAX.           |
| Resources              | Processor Time                 | 00:00:00.03                                |
|                        | Elapsed Time                   | 00:00:00.04                                |

**Descriptive Statistics** 

|             | N   | Minimum | Maximum | Mean | Std. Deviation |
|-------------|-----|---------|---------|------|----------------|
| LDS1 LDS1   | 249 | 1       | 5       | 3.92 | .824           |
| LDS2 LDS2   | 249 | 1       | 5       | 3.88 | .882           |
| LDS3 LDS3   | 249 | 1       | 5       | 3.87 | .899           |
| LDS4 LDS4   | 249 | 1       | 5       | 3.90 | .821           |
| LDS5 LDS5   | 249 | 1       | 5       | 4.03 | .815           |
| LDS6 LDS6   | 249 | 1       | 5       | 4.16 | .770           |
| LDS7 LDS7   | 249 | 1       | 5       | 3.86 | .828           |
| LDS8 LDS8   | 249 | 1       | 5       | 4.04 | .756           |
| LDS9 LDS9   | 249 | 1       | 5       | 3.83 | .840           |
| MET01 MET01 | 249 | 1       | 5       | 3.75 | .815           |
| MET02 MET02 | 249 | 1       | 5       | 3.76 | .835           |
| MET03 MET03 | 249 | 1       | 5       | 3.57 | .863           |
| MET04 MET04 | 249 | 1       | 5       | 3.94 | .793           |
| MET05 MET05 | 249 | 1       | 5       | 3.63 | .893           |
| MET06 MET06 | 249 | 1       | 5       | 3.73 | .855           |

|                    |     |   | 1 |      |      |
|--------------------|-----|---|---|------|------|
| MET07 MET07        | 249 | 1 | 5 | 3.93 | .756 |
| JOB1 JOB1          | 249 | 1 | 5 | 3.69 | .727 |
| JOB2 JOB2          | 249 | 1 | 5 | 3.61 | .770 |
| JOB3 JOB3          | 249 | 1 | 5 | 3.59 | .783 |
| JOB4 JOB4          | 249 | 1 | 5 | 3.69 | .781 |
| Valid N (listwise) | 249 |   |   |      |      |

## Reliability

#### Notes

| Output Created         |                                | 30-JAN-2020 13:43:14                         |
|------------------------|--------------------------------|----------------------------------------------|
| Comments               |                                |                                              |
| Input                  | Data                           | D:\LU'U TAM\270120\FINAL-DATA                |
|                        |                                | SPSS.sav                                     |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
|                        | Matrix Input                   |                                              |
| Missing Value Handling | Definition of Missing          | User-defined missing values are treated as   |
|                        |                                | missing.                                     |
|                        | Cases Used                     | Statistics are based on all cases with valid |
|                        |                                | data for all variables in the procedure.     |
| Syntax                 |                                | RELIABILITY                                  |
|                        |                                | /VARIABLES=LDS1 LDS2 LDS3 LDS4               |
|                        |                                | LDS5 LDS6 LDS7 LDS8 LDS9 LDS10               |
|                        |                                | MET01 MET02 MET03 MET04 MET05                |
|                        |                                | MET06 MET07 JOB1 JOB2 JOB3 JOB4              |
|                        |                                | /SCALE('ALL VARIABLES') ALL                  |
|                        |                                | /MODEL=ALPHA                                 |
|                        |                                | /STATISTICS=DESCRIPTIVE SCALE                |
|                        |                                | /SUMMARY=TOTAL MEANS VARIANCE                |
|                        |                                | COV.                                         |
| Resources              | Processor Time                 | 00:00:00.03                                  |
|                        | Elapsed Time                   | 00:00:00.04                                  |

## **Scale: ALL VARIABLES**

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Renability Gtationes |              |            |  |  |
|----------------------|--------------|------------|--|--|
|                      | Cronbach's   |            |  |  |
|                      | Alpha Based  |            |  |  |
|                      | on           |            |  |  |
| Cronbach's           | Standardized |            |  |  |
| Alpha                | Items        | N of Items |  |  |
| .949                 | .950         | 21         |  |  |

**Item Statistics** 

|             |      | เนเเอเเบอ      |     |
|-------------|------|----------------|-----|
|             | Mean | Std. Deviation | N   |
| LDS1 LDS1   | 3.92 | .824           | 249 |
| LDS2 LDS2   | 3.88 | .882           | 249 |
| LDS3 LDS3   | 3.87 | .899           | 249 |
| LDS4 LDS4   | 3.90 | .821           | 249 |
| LDS5 LDS5   | 4.03 | .815           | 249 |
| LDS6 LDS6   | 4.16 | .770           | 249 |
| LDS7 LDS7   | 3.86 | .828           | 249 |
| LDS8 LDS8   | 4.04 | .756           | 249 |
| LDS9 LDS9   | 3.83 | .840           | 249 |
| LDS10 LDS10 | 3.55 | .954           | 249 |
| MET01 MET01 | 3.75 | .815           | 249 |
| MET02 MET02 | 3.76 | .835           | 249 |
| MET03 MET03 | 3.57 | .863           | 249 |
| MET04 MET04 | 3.94 | .793           | 249 |
| MET05 MET05 | 3.63 | .893           | 249 |
| MET06 MET06 | 3.73 | .855           | 249 |
| MET07 MET07 | 3.93 | .756           | 249 |
| JOB1 JOB1   | 3.69 | .727           | 249 |
| JOB2 JOB2   | 3.61 | .770           | 249 |
| JOB3 JOB3   | 3.59 | .783           | 249 |
| JOB4 JOB4   | 3.69 | .781           | 249 |

**Summary Item Statistics** 

|                        | , , , , , , , , , , , , , , , , , , , |         |         |       |           |          |            |
|------------------------|---------------------------------------|---------|---------|-------|-----------|----------|------------|
|                        |                                       |         |         |       | Maximum / |          |            |
|                        | Mean                                  | Minimum | Maximum | Range | Minimum   | Variance | N of Items |
| Item Means             | 3.806                                 | 3.550   | 4.157   | .606  | 1.171     | .028     | 21         |
| Item Variances         | .679                                  | .529    | .910    | .381  | 1.720     | .009     | 21         |
| Inter-Item Covariances | .320                                  | .108    | .514    | .405  | 4.748     | .007     | 21         |

190

|             |               | Item-Total   | Statistics  |             |               |
|-------------|---------------|--------------|-------------|-------------|---------------|
|             |               | Scale        | Corrected   | Squared     | Cronbach's    |
|             | Scale Mean if | Variance if  | Item-Total  | Multiple    | Alpha if Item |
|             | Item Deleted  | Item Deleted | Correlation | Correlation | Deleted       |
| LDS1 LDS1   | 76.01         | 133.964      | .739        | .666        | .946          |
| LDS2 LDS2   | 76.06         | 134.787      | .643        | .526        | .947          |
| LDS3 LDS3   | 76.06         | 132.730      | .733        | .648        | .946          |
| LDS4 LDS4   | 76.04         | 134.438      | .715        | .624        | .946          |
| LDS5 LDS5   | 75.90         | 134.628      | .711        | .706        | .946          |
| LDS6 LDS6   | 75.78         | 134.909      | .740        | .724        | .946          |
| LDS7 LDS7   | 76.07         | 134.874      | .685        | .640        | .947          |
| LDS8 LDS8   | 75.89         | 135.589      | .715        | .607        | .946          |
| LDS9 LDS9   | 76.10         | 134.808      | .678        | .569        | .947          |
| LDS10 LDS10 | 76.38         | 139.051      | .390        | .325        | .952          |
| MET01 MET01 | 76.18         | 134.495      | .718        | .658        | .946          |
| MET02 MET02 | 76.17         | 134.197      | .715        | .668        | .946          |
| MET03 MET03 | 76.36         | 133.731      | .714        | .631        | .946          |
| MET04 MET04 | 75.99         | 134.476      | .741        | .664        | .946          |
| MET05 MET05 | 76.30         | 133.847      | .682        | .604        | .947          |
| MET06 MET06 | 76.20         | 133.446      | .737        | .606        | .946          |
| MET07 MET07 | 76.00         | 135.734      | .705        | .621        | .947          |
| JOB1 JOB1   | 76.24         | 138.530      | .565        | .656        | .948          |
| JOB2 JOB2   | 76.32         | 137.637      | .581        | .634        | .948          |
| JOB3 JOB3   | 76.34         | 137.968      | .552        | .543        | .949          |
| JOB4 JOB4   | 76.24         | 136.345      | .646        | .723        | .947          |

#### **Scale Statistics**

|       |          | Std.      |            |
|-------|----------|-----------|------------|
| Mean  | Variance | Deviation | N of Items |
| 79.93 | 148.733  | 12.196    | 21         |

## **Descriptives**

|                | Notes                          |                              |     |
|----------------|--------------------------------|------------------------------|-----|
| Output Created |                                | 30-JAN-2020 13:44:           | :32 |
| Comments       |                                |                              |     |
| Input          | Data                           | D:\LƯU TẠM\270120\FINAL-DATA |     |
|                |                                | SPSS.sav                     |     |
|                | Active Dataset                 | DataSet1                     |     |
|                | Filter                         | <none></none>                |     |
|                | Weight                         | <none></none>                |     |
|                | Split File                     | <none></none>                |     |
|                | N of Rows in Working Data File | 2                            | 249 |

| Missing Value Handling | Definition of Missing | User defined missing values are treated as |
|------------------------|-----------------------|--------------------------------------------|
|                        |                       | missing.                                   |
|                        | Cases Used            | All non-missing data are used.             |
| Syntax                 |                       | DESCRIPTIVES VARIABLES=OGC1 OGC2           |
|                        |                       | OGC3 OGC4 OGC5 OGC6 OGC7                   |
|                        |                       | /STATISTICS=MEAN STDDEV MIN MAX.           |
| Resources              | Processor Time        | 00:00:00.03                                |
|                        | Elapsed Time          | 00:00:00.20                                |

**Descriptive Statistics** 

| 2001101110 0141101100 |     |         |         |      |                |
|-----------------------|-----|---------|---------|------|----------------|
|                       | N   | Minimum | Maximum | Mean | Std. Deviation |
| OGC1 OGC1             | 249 | 1       | 5       | 3.74 | .856           |
| OGC2 OGC2             | 249 | 1       | 5       | 3.68 | .857           |
| OGC3 OGC3             | 249 | 1       | 5       | 3.90 | .792           |
| OGC4 OGC4             | 249 | 1       | 5       | 3.96 | .756           |
| OGC5 OGC5             | 249 | 1       | 5       | 3.85 | .804           |
| OGC6 OGC6             | 249 | 1       | 5       | 3.82 | .778           |
| OGC7 OGC7             | 249 | 1       | 5       | 3.41 | .976           |
| Valid N (listwise)    | 249 |         |         |      |                |

## Reliability

#### Notes

|                        | Notes                          |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 30-JAN-2020 13:45:04                         |
| Comments               |                                |                                              |
| Input                  | Data                           | D:\LU'U TAM\270120\FINAL-DATA                |
|                        |                                | SPSS.sav                                     |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
|                        | Matrix Input                   |                                              |
| Missing Value Handling | Definition of Missing          | User-defined missing values are treated as   |
|                        |                                | missing.                                     |
|                        | Cases Used                     | Statistics are based on all cases with valid |
|                        |                                | data for all variables in the procedure.     |

| Syntax    |                | RELIABILITY                    |
|-----------|----------------|--------------------------------|
|           |                | /VARIABLES=OGC1 OGC2 OGC3 OGC4 |
|           |                | OGC5 OGC6 OGC7                 |
|           |                | /SCALE('ALL VARIABLES') ALL    |
|           |                | /MODEL=ALPHA                   |
|           |                | /STATISTICS=DESCRIPTIVE SCALE  |
|           |                | /SUMMARY=TOTAL MEANS VARIANCE  |
|           |                | COV.                           |
| Resources | Processor Time | 00:00:00.00                    |
|           | Elapsed Time   | 00:00:00.26                    |

## **Scale: ALL VARIABLES**

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Reliability Statistics |                           |            |  |  |
|------------------------|---------------------------|------------|--|--|
|                        | Cronbach's<br>Alpha Based |            |  |  |
|                        |                           |            |  |  |
|                        | on                        |            |  |  |
|                        | Standardized              |            |  |  |
| Cronbach's Alpha       | Items                     | N of Items |  |  |
| .916                   | .919                      | 7          |  |  |

**Item Statistics** 

|           | Mean | Std. Deviation | N   |  |  |
|-----------|------|----------------|-----|--|--|
| OGC1 OGC1 | 3.74 | .856           | 249 |  |  |
| OGC2 OGC2 | 3.68 | .857           | 249 |  |  |
| OGC3 OGC3 | 3.90 | .792           | 249 |  |  |
| OGC4 OGC4 | 3.96 | .756           | 249 |  |  |
| OGC5 OGC5 | 3.85 | .804           | 249 |  |  |
| OGC6 OGC6 | 3.82 | .778           | 249 |  |  |
| OGC7 OGC7 | 3.41 | .976           | 249 |  |  |

| Summary Item Statistics |       |         |         |       |           |          |            |
|-------------------------|-------|---------|---------|-------|-----------|----------|------------|
|                         |       |         |         |       | Maximum / |          |            |
|                         | Mean  | Minimum | Maximum | Range | Minimum   | Variance | N of Items |
| Item Means              | 3.766 | 3.410   | 3.960   | .550  | 1.161     | .034     | 7          |
| Item Variances          | .696  | .571    | .952    | .382  | 1.668     | .017     | 7          |
| Inter-Item Covariances  | .424  | .331    | .570    | .239  | 1.723     | .003     | 7          |

**Item-Total Statistics** 

|           |               | Scale        | Corrected Item- | Squared     | Cronbach's    |
|-----------|---------------|--------------|-----------------|-------------|---------------|
|           | Scale Mean if | Variance if  | Total           | Multiple    | Alpha if Item |
|           | Item Deleted  | Item Deleted | Correlation     | Correlation | Deleted       |
| OGC1 OGC1 | 22.62         | 16.478       | .789            | .697        | .899          |
| OGC2 OGC2 | 22.69         | 16.506       | .782            | .688        | .899          |
| OGC3 OGC3 | 22.46         | 16.983       | .778            | .661        | .900          |
| OGC4 OGC4 | 22.41         | 17.258       | .775            | .699        | .901          |
| OGC5 OGC5 | 22.52         | 16.807       | .795            | .676        | .898          |
| OGC6 OGC6 | 22.54         | 17.467       | .710            | .558        | .907          |
| OGC7 OGC7 | 22.96         | 16.833       | .613            | .405        | .921          |

**Scale Statistics** 

|       |          | Std.      |            |
|-------|----------|-----------|------------|
| Mean  | Variance | Deviation | N of Items |
| 26.37 | 22.693   | 4.764     | 7          |

## **Factor Analysis**

Notes

|                        | Notes                          |                                         |
|------------------------|--------------------------------|-----------------------------------------|
| Output Created         |                                | 30-JAN-2020 13:46:43                    |
| Comments               |                                |                                         |
| Input                  | Data                           | D:\LU'U TAM\270120\FINAL-DATA           |
|                        |                                | SPSS.sav                                |
|                        | Active Dataset                 | DataSet1                                |
|                        | Filter                         | <none></none>                           |
|                        | Weight                         | <none></none>                           |
|                        | Split File                     | <none></none>                           |
|                        | N of Rows in Working Data File | 249                                     |
| Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing   |
|                        |                                | values are treated as missing.          |
|                        | Cases Used                     | LISTWISE: Statistics are based on cases |
|                        |                                | with no missing values for any variable |
|                        |                                | used.                                   |

| Syntax    |                         | FACTOR                             |
|-----------|-------------------------|------------------------------------|
|           |                         | /VARIABLES LDS1 LDS2 LDS3 LDS4     |
|           |                         | LDS5 LDS6 LDS7 LDS8 LDS9 LDS10     |
|           |                         | MET01 MET02 MET03 MET04 MET05      |
|           |                         | MET06 MET07 JOB1 JOB2 JOB3 JOB4    |
|           |                         | /MISSING LISTWISE                  |
|           |                         | /ANALYSIS LDS1 LDS2 LDS3 LDS4 LDS5 |
|           |                         | LDS6 LDS7 LDS8 LDS9 LDS10 MET01    |
|           |                         | MET02 MET03 MET04 MET05 MET06      |
|           |                         | MET07 JOB1 JOB2 JOB3 JOB4          |
|           |                         | /PRINT INITIAL KMO EXTRACTION      |
|           |                         | ROTATION                           |
|           |                         | /FORMAT BLANK(.50)                 |
|           |                         | /CRITERIA MINEIGEN(1) ITERATE(25)  |
|           |                         | /EXTRACTION PC                     |
|           |                         | /CRITERIA ITERATE(25)              |
|           |                         | /ROTATION VARIMAX                  |
|           |                         | /METHOD=CORRELATION.               |
| Resources | Processor Time          | 00:00:00.06                        |
|           | Elapsed Time            | 00:00:00.10                        |
|           | Maximum Memory Required | 53464 (52.211K) bytes              |

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure o                     | .939 |          |
|--------------------------------------------------|------|----------|
| Bartlett's Test of Sphericity Approx. Chi-Square |      | 3656.950 |
|                                                  | df   | 210      |
|                                                  | Sig. | .000     |

#### Communalities

|             | Initial | Extraction |
|-------------|---------|------------|
| LDS1 LDS1   | 1.000   | .678       |
| LDS2 LDS2   | 1.000   | .551       |
| LDS3 LDS3   | 1.000   | .639       |
| LDS4 LDS4   | 1.000   | .709       |
| LDS5 LDS5   | 1.000   | .765       |
| LDS6 LDS6   | 1.000   | .761       |
| LDS7 LDS7   | 1.000   | .614       |
| LDS8 LDS8   | 1.000   | .585       |
| LDS9 LDS9   | 1.000   | .592       |
| LDS10 LDS10 | 1.000   | .453       |
| MET01 MET01 | 1.000   | .652       |
| MET02 MET02 | 1.000   | .657       |
| MET03 MET03 | 1.000   | .664       |
| MET04 MET04 | 1.000   | .624       |

| MET05 MET05 | 1.000 | .668 |
|-------------|-------|------|
| MET06 MET06 | 1.000 | .617 |
| MET07 MET07 | 1.000 | .564 |
| JOB1 JOB1   | 1.000 | .738 |
| JOB2 JOB2   | 1.000 | .764 |
| JOB3 JOB3   | 1.000 | .644 |
| JOB4 JOB4   | 1.000 | .778 |

**Total Variance Explained** 

|           |        |                  |            |        | ction Sums of |            | Rotat | ion Sums of | Squared    |
|-----------|--------|------------------|------------|--------|---------------|------------|-------|-------------|------------|
|           |        | Initial Eigenval | ues        |        | Loadings      |            |       | Loadings    |            |
|           |        | % of             | Cumulative |        | % of          | Cumulative |       | % of        | Cumulative |
| Component | Total  | Variance         | %          | Total  | Variance      | %          | Total | Variance    | %          |
| 1         | 10.650 | 50.715           | 50.715     | 10.650 | 50.715        | 50.715     | 5.734 | 27.307      | 27.307     |
| 2         | 1.835  | 8.740            | 59.455     | 1.835  | 8.740         | 59.455     | 4.143 | 19.730      | 47.036     |
| 3         | 1.231  | 5.862            | 65.317     | 1.231  | 5.862         | 65.317     | 3.839 | 18.281      | 65.317     |
| 4         | .961   | 4.575            | 69.892     |        |               |            |       |             |            |
| 5         | .701   | 3.338            | 73.230     |        |               |            |       |             |            |
| 6         | .630   | 2.998            | 76.228     |        |               |            |       |             |            |
| 7         | .622   | 2.963            | 79.191     |        |               |            |       |             |            |
| 8         | .486   | 2.312            | 81.504     |        |               |            |       |             |            |
| 9         | .457   | 2.178            | 83.681     |        |               |            |       |             |            |
| 10        | .417   | 1.985            | 85.666     |        |               |            |       |             |            |
| 11        | .395   | 1.879            | 87.545     |        |               |            |       |             |            |
| 12        | .359   | 1.707            | 89.252     |        |               |            |       |             |            |
| 13        | .348   | 1.658            | 90.911     |        |               |            |       |             |            |
| 14        | .300   | 1.430            | 92.340     |        |               |            |       |             |            |
| 15        | .291   | 1.387            | 93.727     |        |               |            |       |             |            |
| 16        | .281   | 1.339            | 95.066     |        |               |            |       |             |            |
| 17        | .257   | 1.225            | 96.290     |        |               |            |       |             |            |
| 18        | .231   | 1.098            | 97.388     |        |               |            |       |             |            |
| 19        | .228   | 1.088            | 98.476     |        |               |            |       |             |            |
| 20        | .177   | .844             | 99.321     |        |               |            |       |             |            |
| 21        | .143   | .679             | 100.000    |        |               |            |       |             |            |

Extraction Method: Principal Component Analysis.

Component Matrix<sup>a</sup>

|             | Component |      |   |
|-------------|-----------|------|---|
|             | 1         | 2    | 3 |
| LDS1 LDS1   | .772      |      |   |
| LDS2 LDS2   | .682      |      |   |
| LDS3 LDS3   | .766      |      |   |
| LDS4 LDS4   | .755      |      |   |
| LDS5 LDS5   | .753      |      |   |
| LDS6 LDS6   | .781      |      |   |
| LDS7 LDS7   | .721      |      |   |
| LDS8 LDS8   | .748      |      |   |
| LDS9 LDS9   | .710      |      |   |
| LDS10 LDS10 |           |      |   |
| MET01 MET01 | .753      |      |   |
| MET02 MET02 | .750      |      |   |
| MET03 MET03 | .744      |      |   |
| MET04 MET04 | .777      |      |   |
| MET05 MET05 | .713      |      |   |
| MET06 MET06 | .770      |      |   |
| MET07 MET07 | .746      |      |   |
| JOB1 JOB1   | .600      | .614 |   |
| JOB2 JOB2   | .619      | .615 |   |
| JOB3 JOB3   | .589      | .544 |   |
| JOB4 JOB4   | .678      | .563 |   |

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

**Rotated Component Matrix**<sup>a</sup>

|             | Component |      |   |  |
|-------------|-----------|------|---|--|
|             | 1         | 2    | 3 |  |
| LDS1 LDS1   | .657      |      |   |  |
| LDS2 LDS2   | .673      |      |   |  |
| LDS3 LDS3   | .679      |      |   |  |
| LDS4 LDS4   | .756      |      |   |  |
| LDS5 LDS5   | .838      |      |   |  |
| LDS6 LDS6   | .800      |      |   |  |
| LDS7 LDS7   | .695      |      |   |  |
| LDS8 LDS8   | .627      |      |   |  |
| LDS9 LDS9   | .530      | .550 |   |  |
| LDS10 LDS10 |           | .670 |   |  |
| MET01 MET01 |           | .648 |   |  |
| MET02 MET02 |           | .668 |   |  |
| MET03 MET03 |           | .680 |   |  |

197

|             | Ī |      | I    |
|-------------|---|------|------|
| MET04 MET04 |   |      |      |
| MET05 MET05 |   | .709 |      |
| MET06 MET06 |   | .556 |      |
| MET07 MET07 |   |      |      |
| JOB1 JOB1   |   |      | .825 |
| JOB2 JOB2   |   |      | .837 |
| JOB3 JOB3   |   |      | .759 |
| JOB4 JOB4   |   |      | .819 |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.<sup>a</sup>

a. Rotation converged in 4 iterations.

**Component Transformation Matrix** 

| Component | 1    | 2    | 3    |
|-----------|------|------|------|
| 1         | .684 | .552 | .477 |
| 2         | 399  | 264  | .878 |
| 3         | 611  | .791 | 039  |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

## **Factor Analysis**

|                        | Notes                          |                                         |
|------------------------|--------------------------------|-----------------------------------------|
| Output Created         |                                | 30-JAN-2020 13:47:41                    |
| Comments               |                                |                                         |
| Input                  | Data                           | D:\LU'U TAM\270120\FINAL-DATA           |
|                        |                                | SPSS.sav                                |
|                        | Active Dataset                 | DataSet1                                |
|                        | Filter                         | <none></none>                           |
|                        | Weight                         | <none></none>                           |
|                        | Split File                     | <none></none>                           |
|                        | N of Rows in Working Data File | 249                                     |
| Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing   |
|                        |                                | values are treated as missing.          |
|                        | Cases Used                     | LISTWISE: Statistics are based on cases |
|                        |                                | with no missing values for any variable |
|                        |                                | used.                                   |

| Cumtav    |                         | FACTOR                            |  |
|-----------|-------------------------|-----------------------------------|--|
| Syntax    |                         | FACTOR                            |  |
|           |                         | /VARIABLES OGC1 OGC2 OGC3 OGC4    |  |
|           |                         | OGC5 OGC6 OGC7                    |  |
|           |                         | /MISSING LISTWISE                 |  |
|           |                         | /ANALYSIS OGC1 OGC2 OGC3 OGC4     |  |
|           |                         | OGC5 OGC6 OGC7                    |  |
|           |                         | /PRINT INITIAL KMO EXTRACTION     |  |
|           |                         | ROTATION                          |  |
|           |                         | /FORMAT BLANK(.50)                |  |
|           |                         | /CRITERIA MINEIGEN(1) ITERATE(25) |  |
|           |                         | /EXTRACTION PC                    |  |
|           |                         | /CRITERIA ITERATE(25)             |  |
|           |                         | /ROTATION VARIMAX                 |  |
|           |                         | /METHOD=CORRELATION.              |  |
| Resources | Processor Time          | 00:00:00.02                       |  |
|           | Elapsed Time            | 00:00:00.35                       |  |
|           | Maximum Memory Required | 7376 (7.203K) bytes               |  |

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |      | .887     |
|--------------------------------------------------|------|----------|
| Bartlett's Test of Sphericity Approx. Chi-Square |      | 1201.707 |
|                                                  | df   | 21       |
|                                                  | Sig. | .000     |

Communalities

|           | Initial | Extraction |
|-----------|---------|------------|
| OGC1 OGC1 | 1.000   | .723       |
| OGC2 OGC2 | 1.000   | .719       |
| OGC3 OGC3 | 1.000   | .720       |
| OGC4 OGC4 | 1.000   | .722       |
| OGC5 OGC5 | 1.000   | .741       |
| OGC6 OGC6 | 1.000   | .623       |
| OGC7 OGC7 | 1.000   | .489       |

Extraction Method: Principal Component

Analysis.

**Total Variance Explained** 

|           | Total Variation Explained |                  |            |                                     |          |            |  |  |  |
|-----------|---------------------------|------------------|------------|-------------------------------------|----------|------------|--|--|--|
|           |                           | Initial Eigenval | ues        | Extraction Sums of Squared Loadings |          |            |  |  |  |
|           |                           | % of             | Cumulative |                                     | % of     | Cumulative |  |  |  |
| Component | Total                     | Variance         | %          | Total                               | Variance | %          |  |  |  |
| 1         | 4.738                     | 67.681           | 67.681     | 4.738                               | 67.681   | 67.681     |  |  |  |
| 2         | .625                      | 8.927            | 76.608     |                                     |          |            |  |  |  |
| 3         | .542                      | 7.747            | 84.355     |                                     |          |            |  |  |  |
| 4         | .382                      | 5.451            | 89.807     |                                     |          |            |  |  |  |

| I | 5 | .330 | 4.710 | 94.517  |
|---|---|------|-------|---------|
|   | 6 | .208 | 2.976 | 97.493  |
|   | 7 | .176 | 2.507 | 100.000 |

Extraction Method: Principal Component Analysis.

## Component Matrix<sup>a</sup>

|           | Component |
|-----------|-----------|
|           | 1         |
| OGC1 OGC1 | .850      |
| OGC2 OGC2 | .848      |
| OGC3 OGC3 | .848      |
| OGC4 OGC4 | .850      |
| OGC5 OGC5 | .861      |
| OGC6 OGC6 | .790      |
| OGC7 OGC7 | .699      |

Extraction Method: Principal

Component Analysis.

a. 1 components extracted.

## **Descriptives**

#### Notes

|                        | 140163                         |                                            |
|------------------------|--------------------------------|--------------------------------------------|
| Output Created         |                                | 30-JAN-2020 16:04:04                       |
| Comments               |                                |                                            |
| Input                  | Data                           | D:\LU'U TAM\270120\FINAL-DATA              |
|                        |                                | SPSS.sav                                   |
|                        | Active Dataset                 | DataSet1                                   |
|                        | Filter                         | <none></none>                              |
|                        | Weight                         | <none></none>                              |
|                        | Split File                     | <none></none>                              |
|                        | N of Rows in Working Data File | 249                                        |
| Missing Value Handling | Definition of Missing          | User defined missing values are treated as |
|                        |                                | missing.                                   |
|                        | Cases Used                     | All non-missing data are used.             |
| Syntax                 |                                | DESCRIPTIVES VARIABLES=OGC1 OGC2           |
|                        |                                | OGC3 OGC4 OGC5 OGC6 OGC7 LDS1              |
|                        |                                | LDS2 LDS3 LDS4 LDS5 LDS6 LDS7 LDS8         |
|                        |                                | LDS9 LDS10 MET01 MET02 MET03               |
|                        |                                | MET04 MET05 MET06 MET07 JOB1 JOB2          |
|                        |                                | JOB3 JOB4                                  |
|                        |                                | /STATISTICS=MEAN STDDEV MIN MAX.           |
| Resources              | Processor Time                 | 00:00:00.02                                |
|                        | Elapsed Time                   | 00:00:00.03                                |

**Descriptive Statistics** 

|                    | N   | Minimum | Maximum | Mean | Std. Deviation |
|--------------------|-----|---------|---------|------|----------------|
| OGC1 OGC1          | 249 | 1       | 5       | 3.74 | .856           |
| OGC2 OGC2          | 249 | 1       | 5       | 3.68 | .857           |
| OGC3 OGC3          | 249 | 1       | 5       | 3.90 | .792           |
| OGC4 OGC4          | 249 | 1       | 5       | 3.96 | .756           |
| OGC5 OGC5          | 249 | 1       | 5       | 3.85 | .804           |
| OGC6 OGC6          | 249 | 1       | 5       | 3.82 | .778           |
| OGC7 OGC7          | 249 | 1       | 5       | 3.41 | .976           |
| LDS1 LDS1          | 249 | 1       | 5       | 3.92 | .824           |
| LDS2 LDS2          | 249 | 1       | 5       | 3.88 | .882           |
| LDS3 LDS3          | 249 | 1       | 5       | 3.87 | .899           |
| LDS4 LDS4          | 249 | 1       | 5       | 3.90 | .821           |
| LDS5 LDS5          | 249 | 1       | 5       | 4.03 | .815           |
| LDS6 LDS6          | 249 | 1       | 5       | 4.16 | .770           |
| LDS7 LDS7          | 249 | 1       | 5       | 3.86 | .828           |
| LDS8 LDS8          | 249 | 1       | 5       | 4.04 | .756           |
| LDS9 LDS9          | 249 | 1       | 5       | 3.83 | .840           |
| LDS10 LDS10        | 249 | 1       | 5       | 3.55 | .954           |
| MET01 MET01        | 249 | 1       | 5       | 3.75 | .815           |
| MET02 MET02        | 249 | 1       | 5       | 3.76 | .835           |
| MET03 MET03        | 249 | 1       | 5       | 3.57 | .863           |
| MET04 MET04        | 249 | 1       | 5       | 3.94 | .793           |
| MET05 MET05        | 249 | 1       | 5       | 3.63 | .893           |
| MET06 MET06        | 249 | 1       | 5       | 3.73 | .855           |
| MET07 MET07        | 249 | 1       | 5       | 3.93 | .756           |
| JOB1 JOB1          | 249 | 1       | 5       | 3.69 | .727           |
| JOB2 JOB2          | 249 | 1       | 5       | 3.61 | .770           |
| JOB3 JOB3          | 249 | 1       | 5       | 3.59 | .783           |
| JOB4 JOB4          | 249 | 1       | 5       | 3.69 | .781           |
| Valid N (listwise) | 249 |         |         |      |                |

## Reliability

#### Notes

|                | Notes                          |                               |
|----------------|--------------------------------|-------------------------------|
| Output Created |                                | 30-JAN-2020 16:43:04          |
| Comments       |                                |                               |
| Input          | Data                           | D:\LU'U TAM\270120\FINAL-DATA |
|                |                                | SPSS.sav                      |
|                | Active Dataset                 | DataSet1                      |
|                | Filter                         | <none></none>                 |
|                | Weight                         | <none></none>                 |
|                | Split File                     | <none></none>                 |
|                | N of Rows in Working Data File | 249                           |
|                | Matrix Input                   | l l                           |

| Missing Value Handling | Definition of Missing | User-defined missing values are treated as   |  |  |
|------------------------|-----------------------|----------------------------------------------|--|--|
|                        |                       | missing.                                     |  |  |
|                        | Cases Used            | Statistics are based on all cases with valid |  |  |
|                        |                       | data for all variables in the procedure.     |  |  |
| Syntax                 |                       | RELIABILITY                                  |  |  |
|                        |                       | /VARIABLES=OGC1 OGC2 OGC3 OGC4               |  |  |
|                        |                       | OGC5 OGC6 OGC7 LDS1 LDS2 LDS3                |  |  |
|                        |                       | LDS4 LDS5 LDS6 LDS7 LDS8 LDS9                |  |  |
|                        |                       | LDS10 MET01 MET02 MET03 MET04                |  |  |
|                        |                       | MET05 MET06 MET07 JOB1 JOB2 JOB3             |  |  |
|                        |                       | JOB4                                         |  |  |
|                        |                       | /SCALE('ALL VARIABLES') ALL                  |  |  |
|                        |                       | /MODEL=ALPHA                                 |  |  |
|                        |                       | /STATISTICS=DESCRIPTIVE SCALE                |  |  |
|                        |                       | /SUMMARY=TOTAL MEANS VARIANCE                |  |  |
|                        |                       | COV.                                         |  |  |
| Resources              | Processor Time        | 00:00:00.02                                  |  |  |
|                        | Elapsed Time          | 00:00:00.05                                  |  |  |

#### Warnings

The determinant of the covariance matrix is zero or approximately zero. Statistics based on its inverse matrix cannot be computed and they are displayed as system missing values.

## Scale: ALL VARIABLES

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

|                  | Cronbach's<br>Alpha Based |            |
|------------------|---------------------------|------------|
|                  | on                        |            |
|                  | Standardized              |            |
| Cronbach's Alpha | Items                     | N of Items |
| .961             | .962                      | 28         |

#### **Item Statistics**

|           | Mean | Std. Deviation | N   |
|-----------|------|----------------|-----|
| OGC1 OGC1 | 3.74 | .856           | 249 |
| OGC2 OGC2 | 3.68 | .857           | 249 |
| OGC3 OGC3 | 3.90 | .792           | 249 |

|             |      | ı    |     |
|-------------|------|------|-----|
| OGC4 OGC4   | 3.96 | .756 | 249 |
| OGC5 OGC5   | 3.85 | .804 | 249 |
| OGC6 OGC6   | 3.82 | .778 | 249 |
| OGC7 OGC7   | 3.41 | .976 | 249 |
| LDS1 LDS1   | 3.92 | .824 | 249 |
| LDS2 LDS2   | 3.88 | .882 | 249 |
| LDS3 LDS3   | 3.87 | .899 | 249 |
| LDS4 LDS4   | 3.90 | .821 | 249 |
| LDS5 LDS5   | 4.03 | .815 | 249 |
| LDS6 LDS6   | 4.16 | .770 | 249 |
| LDS7 LDS7   | 3.86 | .828 | 249 |
| LDS8 LDS8   | 4.04 | .756 | 249 |
| LDS9 LDS9   | 3.83 | .840 | 249 |
| LDS10 LDS10 | 3.55 | .954 | 249 |
| MET01 MET01 | 3.75 | .815 | 249 |
| MET02 MET02 | 3.76 | .835 | 249 |
| MET03 MET03 | 3.57 | .863 | 249 |
| MET04 MET04 | 3.94 | .793 | 249 |
| MET05 MET05 | 3.63 | .893 | 249 |
| MET06 MET06 | 3.73 | .855 | 249 |
| MET07 MET07 | 3.93 | .756 | 249 |
| JOB1 JOB1   | 3.69 | .727 | 249 |
| JOB2 JOB2   | 3.61 | .770 | 249 |
| JOB3 JOB3   | 3.59 | .783 | 249 |
| JOB4 JOB4   | 3.69 | .781 | 249 |

**Summary Item Statistics** 

|                        | Mean  | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |
|------------------------|-------|---------|---------|-------|----------------------|----------|------------|
| Item Means             | 3.796 | 3.410   | 4.157   | .747  | 1.219                | .029     | 28         |
| Item Variances         | .683  | .529    | .952    | .424  | 1.801                | .010     | 28         |
| Inter-Item Covariances | .320  | .090    | .570    | .481  | 6.369                | .006     | 28         |

**Item-Total Statistics** 

|           | Scale Mean if | Scale Variance if Item Deleted | Corrected Item-<br>Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |
|-----------|---------------|--------------------------------|-----------------------------------------|------------------------------------|----------------------------------------|
| OGC1 OGC1 | 102.55        | 241.909                        | .682                                    |                                    | .960                                   |
| OGC2 OGC2 | 102.62        | 240.955                        | .717                                    |                                    | .959                                   |
| OGC3 OGC3 | 102.39        | 242.546                        | .713                                    |                                    | .959                                   |
| OGC4 OGC4 | 102.34        | 242.483                        | .753                                    |                                    | .959                                   |
| OGC5 OGC5 | 102.45        | 242.240                        | .715                                    |                                    | .959                                   |
| OGC6 OGC6 | 102.47        | 243.565                        | .684                                    |                                    | .960                                   |
| OGC7 OGC7 | 102.89        | 241.907                        | .590                                    |                                    | .960                                   |

|             |        | i       | i i  | i | •    |
|-------------|--------|---------|------|---|------|
| LDS1 LDS1   | 102.38 | 241.752 | .716 |   | .959 |
| LDS2 LDS2   | 102.42 | 243.172 | .612 |   | .960 |
| LDS3 LDS3   | 102.43 | 240.367 | .703 |   | .959 |
| LDS4 LDS4   | 102.40 | 241.790 | .717 |   | .959 |
| LDS5 LDS5   | 102.27 | 242.633 | .688 |   | .959 |
| LDS6 LDS6   | 102.14 | 242.936 | .719 |   | .959 |
| LDS7 LDS7   | 102.44 | 243.134 | .657 |   | .960 |
| LDS8 LDS8   | 102.26 | 243.853 | .693 |   | .959 |
| LDS9 LDS9   | 102.47 | 243.089 | .649 |   | .960 |
| LDS10 LDS10 | 102.75 | 249.327 | .350 |   | .963 |
| MET01 MET01 | 102.55 | 242.523 | .694 |   | .959 |
| MET02 MET02 | 102.53 | 241.855 | .702 |   | .959 |
| MET03 MET03 | 102.72 | 241.322 | .698 |   | .959 |
| MET04 MET04 | 102.36 | 242.013 | .735 |   | .959 |
| MET05 MET05 | 102.66 | 241.547 | .664 |   | .960 |
| MET06 MET06 | 102.57 | 241.044 | .716 |   | .959 |
| MET07 MET07 | 102.37 | 243.539 | .706 |   | .959 |
| JOB1 JOB1   | 102.61 | 245.788 | .634 |   | .960 |
| JOB2 JOB2   | 102.68 | 244.669 | .644 |   | .960 |
| JOB3 JOB3   | 102.71 | 244.797 | .627 |   | .960 |
| JOB4 JOB4   | 102.61 | 242.707 | .718 |   | .959 |

#### **Scale Statistics**

| Mean   | Variance | Std. Deviation | N of Items |  |
|--------|----------|----------------|------------|--|
| 106.30 | 260.782  | 16.149         | 28         |  |

## Reliability

#### Notes

|                        | notes                          |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 31-JAN-2020 16:24:37                         |
| Comments               |                                |                                              |
| Input                  | Data                           | D:\LU'U TAM\270120\FINAL-DATA                |
|                        |                                | SPSS.sav                                     |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
|                        | Matrix Input                   |                                              |
| Missing Value Handling | Definition of Missing          | User-defined missing values are treated as   |
|                        |                                | missing.                                     |
|                        | Cases Used                     | Statistics are based on all cases with valid |
|                        |                                | data for all variables in the procedure.     |

| Syntax    |                | RELIABILITY                        |  |
|-----------|----------------|------------------------------------|--|
|           |                | /VARIABLES=JOB1 JOB2 JOB3 JOB4     |  |
|           |                | LDS1 LDS2 LDS3 LDS4 LDS5 LDS6 LDS7 |  |
|           |                | LDS8 LDS9 LDS10 MET01 MET02 MET03  |  |
|           |                | MET04 MET05 MET06 MET07 OGC1       |  |
|           |                | OGC2 OGC3 OGC4 OGC5 OGC6 OGC7      |  |
|           |                | /SCALE('ALL VARIABLES') ALL        |  |
|           |                | /MODEL=ALPHA                       |  |
|           |                | /STATISTICS=DESCRIPTIVE SCALE      |  |
|           |                | /SUMMARY=TOTAL MEANS VARIANCE      |  |
|           |                | COV.                               |  |
| Resources | Processor Time | 00:00:00.16                        |  |
|           | Elapsed Time   | 00:00:01.75                        |  |

#### Warnings

The determinant of the covariance matrix is zero or approximately zero. Statistics based on its inverse matrix cannot be computed and they are displayed as system missing values.

#### Scale: ALL VARIABLES

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

| Relia | bility | <b>Statis</b> | tics |
|-------|--------|---------------|------|
|-------|--------|---------------|------|

|                  | Cronbach's<br>Alpha Based |            |
|------------------|---------------------------|------------|
|                  | on                        |            |
|                  | Standardized              |            |
| Cronbach's Alpha | Items                     | N of Items |
| .961             | .962                      | 28         |

#### **Item Statistics**

|           | Mean | Std. Deviation | N   |
|-----------|------|----------------|-----|
| JOB1 JOB1 | 3.69 | .727           | 249 |
| JOB2 JOB2 | 3.61 | .770           | 249 |
| JOB3 JOB3 | 3.59 | .783           | 249 |
| JOB4 JOB4 | 3.69 | .781           | 249 |
| LDS1 LDS1 | 3.92 | .824           | 249 |
| LDS2 LDS2 | 3.88 | .882           | 249 |
| LDS3 LDS3 | 3.87 | .899           | 249 |

| •           |      | i i  | i i |
|-------------|------|------|-----|
| LDS4 LDS4   | 3.90 | .821 | 249 |
| LDS5 LDS5   | 4.03 | .815 | 249 |
| LDS6 LDS6   | 4.16 | .770 | 249 |
| LDS7 LDS7   | 3.86 | .828 | 249 |
| LDS8 LDS8   | 4.04 | .756 | 249 |
| LDS9 LDS9   | 3.83 | .840 | 249 |
| LDS10 LDS10 | 3.55 | .954 | 249 |
| MET01 MET01 | 3.75 | .815 | 249 |
| MET02 MET02 | 3.76 | .835 | 249 |
| MET03 MET03 | 3.57 | .863 | 249 |
| MET04 MET04 | 3.94 | .793 | 249 |
| MET05 MET05 | 3.63 | .893 | 249 |
| MET06 MET06 | 3.73 | .855 | 249 |
| MET07 MET07 | 3.93 | .756 | 249 |
| OGC1 OGC1   | 3.74 | .856 | 249 |
| OGC2 OGC2   | 3.68 | .857 | 249 |
| OGC3 OGC3   | 3.90 | .792 | 249 |
| OGC4 OGC4   | 3.96 | .756 | 249 |
| OGC5 OGC5   | 3.85 | .804 | 249 |
| OGC6 OGC6   | 3.82 | .778 | 249 |
| OGC7 OGC7   | 3.41 | .976 | 249 |

**Summary Item Statistics** 

|                        |         |         | minary item | Otationio |           |          |             |
|------------------------|---------|---------|-------------|-----------|-----------|----------|-------------|
|                        | M = === | N.A.    | Manian      | D         | Maximum / | Variana  | NI of House |
|                        | Mean    | Minimum | Maximum     | Range     | Minimum   | Variance | N of Items  |
| Item Means             | 3.796   | 3.410   | 4.157       | .747      | 1.219     | .029     | 28          |
| Item Variances         | .683    | .529    | .952        | .424      | 1.801     | .010     | 28          |
| Inter-Item Covariances | .320    | .090    | .570        | .481      | 6.369     | .006     | 28          |

**Item-Total Statistics** 

|           | Scale Mean if | Scale<br>Variance if | Corrected Item-<br>Total | Squared<br>Multiple | Cronbach's<br>Alpha if Item |
|-----------|---------------|----------------------|--------------------------|---------------------|-----------------------------|
|           | Item Deleted  | Item Deleted         | Correlation              | Correlation         | Deleted                     |
| JOB1 JOB1 | 102.61        | 245.788              | .634                     |                     | .960                        |
| JOB2 JOB2 | 102.68        | 244.669              | .644                     |                     | .960                        |
| JOB3 JOB3 | 102.71        | 244.797              | .627                     | -                   | .960                        |
| JOB4 JOB4 | 102.61        | 242.707              | .718                     |                     | .959                        |
| LDS1 LDS1 | 102.38        | 241.752              | .716                     | -                   | .959                        |
| LDS2 LDS2 | 102.42        | 243.172              | .612                     |                     | .960                        |
| LDS3 LDS3 | 102.43        | 240.367              | .703                     |                     | .959                        |
| LDS4 LDS4 | 102.40        | 241.790              | .717                     |                     | .959                        |
| LDS5 LDS5 | 102.27        | 242.633              | .688                     |                     | .959                        |
| LDS6 LDS6 | 102.14        | 242.936              | .719                     |                     | .959                        |
| LDS7 LDS7 | 102.44        | 243.134              | .657                     |                     | .960                        |

|             |        | i i     | i i  | i | 1    |
|-------------|--------|---------|------|---|------|
| LDS8 LDS8   | 102.26 | 243.853 | .693 |   | .959 |
| LDS9 LDS9   | 102.47 | 243.089 | .649 |   | .960 |
| LDS10 LDS10 | 102.75 | 249.327 | .350 |   | .963 |
| MET01 MET01 | 102.55 | 242.523 | .694 |   | .959 |
| MET02 MET02 | 102.53 | 241.855 | .702 |   | .959 |
| MET03 MET03 | 102.72 | 241.322 | .698 |   | .959 |
| MET04 MET04 | 102.36 | 242.013 | .735 |   | .959 |
| MET05 MET05 | 102.66 | 241.547 | .664 |   | .960 |
| MET06 MET06 | 102.57 | 241.044 | .716 |   | .959 |
| MET07 MET07 | 102.37 | 243.539 | .706 |   | .959 |
| OGC1 OGC1   | 102.55 | 241.909 | .682 |   | .960 |
| OGC2 OGC2   | 102.62 | 240.955 | .717 |   | .959 |
| OGC3 OGC3   | 102.39 | 242.546 | .713 |   | .959 |
| OGC4 OGC4   | 102.34 | 242.483 | .753 |   | .959 |
| OGC5 OGC5   | 102.45 | 242.240 | .715 |   | .959 |
| OGC6 OGC6   | 102.47 | 243.565 | .684 |   | .960 |
| OGC7 OGC7   | 102.89 | 241.907 | .590 |   | .960 |

**Scale Statistics** 

|        |          | Std.      |            |  |  |
|--------|----------|-----------|------------|--|--|
| Mean   | Variance | Deviation | N of Items |  |  |
| 106.30 | 260.782  | 16.149    | 28         |  |  |

## **Model Fit Summary**

#### **CMIN**

| Model              | NPAR | CMIN     | DF  | P    | CMIN/DF |
|--------------------|------|----------|-----|------|---------|
| Default model      | 54   | 652.314  | 271 | .000 | 2.407   |
| Saturated model    | 325  | .000     | 0   |      |         |
| Independence model | 25   | 4805.188 | 300 | .000 | 16.017  |

## RMR, GFI

| Model              | RMR  | GFI   | AGFI | PGFI |
|--------------------|------|-------|------|------|
| Default model      | .037 | .822  | .787 | .685 |
| Saturated model    | .000 | 1.000 |      |      |
| Independence model | .316 | .150  | .079 | .138 |

## **Baseline Comparisons**

| Model              | NFI    | RFI  | IFI    | TLI  | CEL   |
|--------------------|--------|------|--------|------|-------|
| Model              | Delta1 | rho1 | Delta2 | rho2 | CFI   |
| Default model      | .864   | .850 | .916   | .906 | .915  |
| Saturated model    | 1.000  |      | 1.000  |      | 1.000 |
| Independence model | .000   | .000 | .000   | .000 | .000  |

207

## Parsimony-Adjusted Measures

| Model              | PRATIO | PNFI | PCFI |
|--------------------|--------|------|------|
| Default model      | .903   | .781 | .827 |
| Saturated model    | .000   | .000 | .000 |
| Independence model | 1.000  | .000 | .000 |

#### NCP

| Model              | NCP      | LO 90    | HI 90    |
|--------------------|----------|----------|----------|
| Default model      | 381.314  | 310.339  | 459.984  |
| Saturated model    | .000     | .000     | .000     |
| Independence model | 4505.188 | 4284.278 | 4733.365 |

#### **FMIN**

| Model              | FMIN   | F0     | LO 90  | HI 90  |
|--------------------|--------|--------|--------|--------|
| Default model      | 2.630  | 1.538  | 1.251  | 1.855  |
| Saturated model    | .000   | .000   | .000   | .000   |
| Independence model | 19.376 | 18.166 | 17.275 | 19.086 |

#### RMSEA

| Model              | RMSEA | LO 90 | HI 90 | PCLOSE |
|--------------------|-------|-------|-------|--------|
| Default model      | .075  | .068  | .083  | .000   |
| Independence model | .246  | .240  | .252  | .000   |

## AIC

| Model              | AIC      | BCC      | BIC      | CAIC     |
|--------------------|----------|----------|----------|----------|
| Default model      | 760.314  | 772.962  | 950.256  | 1004.256 |
| Saturated model    | 650.000  | 726.126  | 1793.172 | 2118.172 |
| Independence model | 4855.188 | 4861.043 | 4943.124 | 4968.124 |

#### **ECVI**

| Model              | ECVI   | LO 90  | HI 90  | MECVI  |
|--------------------|--------|--------|--------|--------|
| Default model      | 3.066  | 2.780  | 3.383  | 3.117  |
| Saturated model    | 2.621  | 2.621  | 2.621  | 2.928  |
| Independence model | 19.577 | 18.687 | 20.497 | 19.601 |

#### **HOELTER**

| Model              | HOELTER | <b>HOELTER</b> |
|--------------------|---------|----------------|
| Model              | .05     | .01            |
| Default model      | 119     | 125            |
| Independence model | 18      | 19             |

#### **Notes for Model (Default model)**

#### Computation of degrees of freedom (Default model)

Number of distinct sample moments: 325 Number of distinct parameters to be estimated: 54 Degrees of freedom (325 - 54): 271

#### Result (Default model)

Minimum was achieved Chi-square = 652.314 Degrees of freedom = 271 Probability level = .000

#### **Estimates (Group number 1 - Default model)**

#### **Scalar Estimates (Group number 1 - Default model)**

#### **Maximum Likelihood Estimates**

#### Regression Weights: (Group number 1 - Default model)

|       |   |     | Estimate | S.E. | C.R.   | P   | Label |
|-------|---|-----|----------|------|--------|-----|-------|
| MET   | < | LDS | .838     | .072 | 11.568 | *** |       |
| JOB   | < | MET | .576     | .065 | 8.923  | *** |       |
| OGC   | < | MET | .296     | .059 | 4.983  | *** |       |
| OGC   | < | JOB | .864     | .082 | 10.573 | *** |       |
| LDS1  | < | LDS | 1.000    |      |        |     |       |
| LDS2  | < | LDS | .963     | .081 | 11.844 | *** |       |
| LDS3  | < | LDS | 1.099    | .081 | 13.644 | *** |       |
| LDS4  | < | LDS | .993     | .074 | 13.458 | *** |       |
| LDS5  | < | LDS | 1.025    | .072 | 14.142 | *** |       |
| LDS6  | < | LDS | .965     | .068 | 14.105 | *** |       |
| LDS7  | < | LDS | .967     | .075 | 12.874 | *** |       |
| LDS8  | < | LDS | .867     | .069 | 12.609 | *** |       |
| MET01 | < | MET | 1.000    |      |        |     |       |
| MET02 | < | MET | 1.034    | .076 | 13.680 | *** |       |
| MET03 | < | MET | 1.057    | .078 | 13.486 | *** |       |
| MET05 | < | MET | 1.020    | .082 | 12.367 | *** |       |
| MET06 | < | MET | 1.027    | .078 | 13.158 | *** |       |
| LDS10 | < | MET | .621     | .095 | 6.536  | *** |       |
| JOB1  | < | JOB | 1.000    |      |        |     |       |
| JOB2  | < | JOB | 1.075    | .074 | 14.584 | *** |       |
| JOB3  | < | JOB | 1.017    | .077 | 13.221 | *** |       |
| JOB4  | < | JOB | 1.188    | .073 | 16.365 | *** |       |
| OGC1  | < | OGC | 1.000    |      |        |     |       |

|      |   |     | Estimate | S.E. | C.R.   | P   | Label |
|------|---|-----|----------|------|--------|-----|-------|
| OGC2 | < | OGC | 1.001    | .064 | 15.653 | *** |       |
| OGC3 | < | OGC | .919     | .059 | 15.500 | *** |       |
| OGC4 | < | OGC | .880     | .056 | 15.585 | *** |       |
| OGC5 | < | OGC | .940     | .060 | 15.689 | *** |       |
| OGC6 | < | OGC | .825     | .061 | 13.577 | *** |       |
| OGC7 | < | OGC | .907     | .080 | 11.382 | *** |       |

 $Standardized \ Regression \ Weights: (Group \ number \ 1 - Default \ model)$ 

|       |   |     | Estimate |
|-------|---|-----|----------|
| MET   | < | LDS | .841     |
| JOB   | < | MET | .634     |
| OGC   | < | MET | .270     |
| OGC   | < | JOB | .716     |
| LDS1  | < | LDS | .785     |
| LDS2  | < | LDS | .706     |
| LDS3  | < | LDS | .791     |
| LDS4  | < | LDS | .783     |
| LDS5  | < | LDS | .813     |
| LDS6  | < | LDS | .812     |
| LDS7  | < | LDS | .755     |
| LDS8  | < | LDS | .743     |
| MET01 | < | MET | .791     |
| MET02 | < | MET | .798     |
| MET03 | < | MET | .789     |
| MET05 | < | MET | .736     |
| MET06 | < | MET | .774     |
| LDS10 | < | MET | .420     |
| JOB1  | < | JOB | .805     |
| JOB2  | < | JOB | .818     |
| JOB3  | < | JOB | .760     |
| JOB4  | < | JOB | .891     |
| OGC1  | < | OGC | .826     |
| OGC2  | < | OGC | .825     |
| OGC3  | < | OGC | .820     |
| OGC4  | < | OGC | .823     |
| OGC5  | < | OGC | .827     |
| OGC6  | < | OGC | .749     |
| OGC7  | < | OGC | .657     |

Variances: (Group number 1 - Default model)

|     | Estimate | S.E. | C.R.  | P   | Label |
|-----|----------|------|-------|-----|-------|
| LDS | .417     | .057 | 7.265 | *** |       |
| d2  | .121     | .021 | 5.843 | *** |       |

|     | Estimate | S.E. | C.R.   | P   | Label |
|-----|----------|------|--------|-----|-------|
| d3  | .204     | .029 | 6.976  | *** |       |
| d1  | .084     | .016 | 5.338  | *** |       |
| e1  | .259     | .026 | 9.850  | *** |       |
| e2  | .389     | .038 | 10.344 | *** |       |
| e3  | .302     | .031 | 9.800  | *** |       |
| e4  | .260     | .026 | 9.874  | *** |       |
| e5  | .224     | .023 | 9.572  | *** |       |
| e6  | .201     | .021 | 9.591  | *** |       |
| e7  | .293     | .029 | 10.075 | *** |       |
| e8  | .255     | .025 | 10.153 | *** |       |
| e9  | .247     | .026 | 9.388  | *** |       |
| e10 | .252     | .027 | 9.307  | *** |       |
| e11 | .280     | .030 | 9.416  | *** |       |
| e12 | .364     | .037 | 9.906  | *** |       |
| e13 | .292     | .031 | 9.582  | *** |       |
| e14 | .747     | .068 | 10.915 | *** |       |
| e15 | .185     | .020 | 9.349  | *** |       |
| e16 | .195     | .021 | 9.169  | *** |       |
| e17 | .258     | .026 | 9.819  | *** |       |
| e18 | .125     | .017 | 7.360  | *** |       |
| e19 | .232     | .024 | 9.628  | *** |       |
| e20 | .233     | .024 | 9.634  | *** |       |
| e21 | .205     | .021 | 9.694  | *** |       |
| e22 | .183     | .019 | 9.661  | *** |       |
| e23 | .204     | .021 | 9.620  | *** |       |
| e24 | .265     | .026 | 10.243 | *** |       |
| e25 | .540     | .051 | 10.607 | *** |       |

## **Squared Multiple Correlations: (Group number 1 - Default model)**

|      | Estimate |
|------|----------|
| MET  | .707     |
| JOB  | .402     |
| OGC  | .831     |
| OGC7 | .431     |
| OGC6 | .561     |
| OGC5 | .683     |
| OGC4 | .678     |
| OGC3 | .673     |
| OGC2 | .681     |
| OGC1 | .682     |
| JOB4 | .794     |
| JOB3 | .578     |
| JOB2 | .669     |

|       | Estimate |
|-------|----------|
| JOB1  | .648     |
| LDS10 | .176     |
| MET06 | .599     |
| MET05 | .542     |
| MET03 | .623     |
| MET02 | .637     |
| MET01 | .626     |
| LDS8  | .552     |
| LDS7  | .571     |
| LDS6  | .659     |
| LDS5  | .662     |
| LDS4  | .612     |
| LDS3  | .626     |
| LDS2  | .498     |
| LDS1  | .617     |

**Matrices (Group number 1 - Default model)** 

**Total Effects (Group number 1 - Default model)** 

|       | LDS   | MET   | JOB   | OGC   |
|-------|-------|-------|-------|-------|
| MET   | .838  | .000  | .000  | .000  |
| JOB   | .483  | .576  | .000  | .000  |
| OGC   | .665  | .794  | .864  | .000  |
| OGC7  | .603  | .720  | .784  | .907  |
| OGC6  | .549  | .655  | .713  | .825  |
| OGC5  | .626  | .747  | .813  | .940  |
| OGC4  | .586  | .699  | .761  | .880  |
| OGC3  | .612  | .730  | .795  | .919  |
| OGC2  | .666  | .795  | .865  | 1.001 |
| OGC1  | .665  | .794  | .864  | 1.000 |
| JOB4  | .574  | .685  | 1.188 | .000  |
| JOB3  | .491  | .586  | 1.017 | .000  |
| JOB2  | .519  | .620  | 1.075 | .000  |
| JOB1  | .483  | .576  | 1.000 | .000  |
| LDS10 | .520  | .621  | .000  | .000  |
| MET06 | .860  | 1.027 | .000  | .000  |
| MET05 | .854  | 1.020 | .000  | .000  |
| MET03 | .885  | 1.057 | .000  | .000  |
| MET02 | .866  | 1.034 | .000  | .000  |
| MET01 | .838  | 1.000 | .000  | .000  |
| LDS8  | .867  | .000  | .000  | .000  |
| LDS7  | .967  | .000  | .000  | .000  |
| LDS6  | .965  | .000  | .000  | .000  |
| LDS5  | 1.025 | .000  | .000  | .000  |

|      | LDS   | MET  | JOB  | OGC  |
|------|-------|------|------|------|
| LDS4 | .993  | .000 | .000 | .000 |
| LDS3 | 1.099 | .000 | .000 | .000 |
| LDS2 | .963  | .000 | .000 | .000 |
| LDS1 | 1.000 | .000 | .000 | .000 |

### **Standardized Total Effects (Group number 1 - Default model)**

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .841 | .000 | .000 | .000 |
| JOB   | .534 | .634 | .000 | .000 |
| OGC   | .609 | .725 | .716 | .000 |
| OGC7  | .400 | .476 | .470 | .657 |
| OGC6  | .456 | .543 | .536 | .749 |
| OGC5  | .504 | .599 | .592 | .827 |
| OGC4  | .502 | .596 | .590 | .823 |
| OGC3  | .500 | .594 | .587 | .820 |
| OGC2  | .503 | .598 | .591 | .825 |
| OGC1  | .503 | .598 | .592 | .826 |
| JOB4  | .475 | .565 | .891 | .000 |
| JOB3  | .406 | .482 | .760 | .000 |
| JOB2  | .436 | .519 | .818 | .000 |
| JOB1  | .430 | .511 | .805 | .000 |
| LDS10 | .353 | .420 | .000 | .000 |
| MET06 | .651 | .774 | .000 | .000 |
| MET05 | .619 | .736 | .000 | .000 |
| MET03 | .664 | .789 | .000 | .000 |
| MET02 | .671 | .798 | .000 | .000 |
| MET01 | .666 | .791 | .000 | .000 |
| LDS8  | .743 | .000 | .000 | .000 |
| LDS7  | .755 | .000 | .000 | .000 |
| LDS6  | .812 | .000 | .000 | .000 |
| LDS5  | .813 | .000 | .000 | .000 |
| LDS4  | .783 | .000 | .000 | .000 |
| LDS3  | .791 | .000 | .000 | .000 |
| LDS2  | .706 | .000 | .000 | .000 |
| LDS1  | .785 | .000 | .000 | .000 |

## **Direct Effects (Group number 1 - Default model)**

|      | LDS  | MET  | JOB  | OGC  |
|------|------|------|------|------|
| MET  | .838 | .000 | .000 | .000 |
| JOB  | .000 | .576 | .000 | .000 |
| OGC  | .000 | .296 | .864 | .000 |
| OGC7 | .000 | .000 | .000 | .907 |
| OGC6 | .000 | .000 | .000 | .825 |

|       | LDS   | MET   | JOB   | OGC   |
|-------|-------|-------|-------|-------|
| OGC5  | .000  | .000  | .000  | .940  |
| OGC4  | .000  | .000  | .000  | .880  |
| OGC3  | .000  | .000  | .000  | .919  |
| OGC2  | .000  | .000  | .000  | 1.001 |
| OGC1  | .000  | .000  | .000  | 1.000 |
| JOB4  | .000  | .000  | 1.188 | .000  |
| JOB3  | .000  | .000  | 1.017 | .000  |
| JOB2  | .000  | .000  | 1.075 | .000  |
| JOB1  | .000  | .000  | 1.000 | .000  |
| LDS10 | .000  | .621  | .000  | .000  |
| MET06 | .000  | 1.027 | .000  | .000  |
| MET05 | .000  | 1.020 | .000  | .000  |
| MET03 | .000  | 1.057 | .000  | .000  |
| MET02 | .000  | 1.034 | .000  | .000  |
| MET01 | .000  | 1.000 | .000  | .000  |
| LDS8  | .867  | .000  | .000  | .000  |
| LDS7  | .967  | .000  | .000  | .000  |
| LDS6  | .965  | .000  | .000  | .000  |
| LDS5  | 1.025 | .000  | .000  | .000  |
| LDS4  | .993  | .000  | .000  | .000  |
| LDS3  | 1.099 | .000  | .000  | .000  |
| LDS2  | .963  | .000  | .000  | .000  |
| LDS1  | 1.000 | .000  | .000  | .000  |

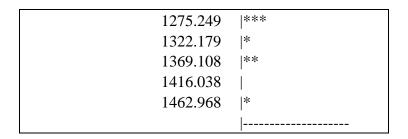
## **Standardized Direct Effects (Group number 1 - Default model)**

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .841 | .000 | .000 | .000 |
| JOB   | .000 | .634 | .000 | .000 |
| OGC   | .000 | .270 | .716 | .000 |
| OGC7  | .000 | .000 | .000 | .657 |
| OGC6  | .000 | .000 | .000 | .749 |
| OGC5  | .000 | .000 | .000 | .827 |
| OGC4  | .000 | .000 | .000 | .823 |
| OGC3  | .000 | .000 | .000 | .820 |
| OGC2  | .000 | .000 | .000 | .825 |
| OGC1  | .000 | .000 | .000 | .826 |
| JOB4  | .000 | .000 | .891 | .000 |
| JOB3  | .000 | .000 | .760 | .000 |
| JOB2  | .000 | .000 | .818 | .000 |
| JOB1  | .000 | .000 | .805 | .000 |
| LDS10 | .000 | .420 | .000 | .000 |
| MET06 | .000 | .774 | .000 | .000 |
| MET05 | .000 | .736 | .000 | .000 |

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET03 | .000 | .789 | .000 | .000 |
| MET02 | .000 | .798 | .000 | .000 |
| MET01 | .000 | .791 | .000 | .000 |
| LDS8  | .743 | .000 | .000 | .000 |
| LDS7  | .755 | .000 | .000 | .000 |
| LDS6  | .812 | .000 | .000 | .000 |
| LDS5  | .813 | .000 | .000 | .000 |
| LDS4  | .783 | .000 | .000 | .000 |
| LDS3  | .791 | .000 | .000 | .000 |
| LDS2  | .706 | .000 | .000 | .000 |
| LDS1  | .785 | .000 | .000 | .000 |

**Indirect Effects (Group number 1 - Default model)** 

| -     |      |      |      |      |
|-------|------|------|------|------|
|       | LDS  | MET  | JOB  | OGC  |
| MET   | .000 | .000 | .000 | .000 |
| JOB   | .483 | .000 | .000 | .000 |
| OGC   | .665 | .498 | .000 | .000 |
| OGC7  | .603 | .720 | .784 | .000 |
| OGC6  | .549 | .655 | .713 | .000 |
| OGC5  | .626 | .747 | .813 | .000 |
| OGC4  | .586 | .699 | .761 | .000 |
| OGC3  | .612 | .730 | .795 | .000 |
| OGC2  | .666 | .795 | .865 | .000 |
| OGC1  | .665 | .794 | .864 | .000 |
| JOB4  | .574 | .685 | .000 | .000 |
| JOB3  | .491 | .586 | .000 | .000 |
| JOB2  | .519 | .620 | .000 | .000 |
| JOB1  | .483 | .576 | .000 | .000 |
| LDS10 | .520 | .000 | .000 | .000 |
| MET06 | .860 | .000 | .000 | .000 |
| MET05 | .854 | .000 | .000 | .000 |
| MET03 | .885 | .000 | .000 | .000 |
| MET02 | .866 | .000 | .000 | .000 |
| MET01 | .838 | .000 | .000 | .000 |
| LDS8  | .000 | .000 | .000 | .000 |
| LDS7  | .000 | .000 | .000 | .000 |
| LDS6  | .000 | .000 | .000 | .000 |
| LDS5  | .000 | .000 | .000 | .000 |
| LDS4  | .000 | .000 | .000 | .000 |
| LDS3  | .000 | .000 | .000 | .000 |
| LDS2  | .000 | .000 | .000 | .000 |
| LDS1  | .000 | .000 | .000 | .000 |


**Standardized Indirect Effects (Group number 1 - Default model)** 

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .000 | .000 | .000 | .000 |
| JOB   | .534 | .000 | .000 | .000 |
| OGC   | .609 | .454 | .000 | .000 |
| OGC7  | .400 | .476 | .470 | .000 |
| OGC6  | .456 | .543 | .536 | .000 |
| OGC5  | .504 | .599 | .592 | .000 |
| OGC4  | .502 | .596 | .590 | .000 |
| OGC3  | .500 | .594 | .587 | .000 |
| OGC2  | .503 | .598 | .591 | .000 |
| OGC1  | .503 | .598 | .592 | .000 |
| JOB4  | .475 | .565 | .000 | .000 |
| JOB3  | .406 | .482 | .000 | .000 |
| JOB2  | .436 | .519 | .000 | .000 |
| JOB1  | .430 | .511 | .000 | .000 |
| LDS10 | .353 | .000 | .000 | .000 |
| MET06 | .651 | .000 | .000 | .000 |
| MET05 | .619 | .000 | .000 | .000 |
| MET03 | .664 | .000 | .000 | .000 |
| MET02 | .671 | .000 | .000 | .000 |
| MET01 | .666 | .000 | .000 | .000 |
| LDS8  | .000 | .000 | .000 | .000 |
| LDS7  | .000 | .000 | .000 | .000 |
| LDS6  | .000 | .000 | .000 | .000 |
| LDS5  | .000 | .000 | .000 | .000 |
| LDS4  | .000 | .000 | .000 | .000 |
| LDS3  | .000 | .000 | .000 | .000 |
| LDS2  | .000 | .000 | .000 | .000 |
| LDS1  | .000 | .000 | .000 | .000 |

## **Bootstrap Distributions (Default model)**

## ML discrepancy (implied vs sample) (Default model)

|                   | 805.953  | *      |
|-------------------|----------|--------|
|                   | 852.882  |        |
|                   | 899.812  | ****   |
|                   | 946.742  | *****  |
|                   | 993.671  | *****  |
|                   | 1040.601 | ****** |
|                   | 1087.531 | ****** |
| N = 200           | 1134.460 | ****** |
| Mean = $1082.782$ | 1181.390 | *****  |
| S. e. = 7.605     | 1228.319 | *****  |



## ML discrepancy (implied vs pop) (Default model)

|                  |         | l         |
|------------------|---------|-----------|
|                  | 710.004 | * *       |
|                  | 719.894 | **        |
|                  | 736.387 | *****     |
|                  | 752.880 | ********* |
|                  | 769.373 | ******    |
|                  | 785.866 | *******   |
|                  | 802.359 | *****     |
|                  | 818.852 | *****     |
| N = 200          | 835.345 | ***       |
| Mean = $783.639$ | 851.837 | **        |
| S. $e. = 2.881$  | 868.330 | **        |
|                  | 884.823 | *         |
|                  | 901.316 | *         |
|                  | 917.809 |           |
|                  | 934.302 | *         |
|                  | 950.795 | *         |
|                  |         |           |

#### K-L overoptimism (unstabilized) (Default model)

|                  | -768.405 | *      |
|------------------|----------|--------|
|                  | -606.799 | *      |
|                  | -445.192 | ***    |
|                  | -283.585 | ****   |
|                  | -121.978 | *****  |
|                  | 39.629   | *****  |
|                  | 201.236  | ****** |
| N = 200          | 362.843  | *****  |
| Mean = $221.463$ | 524.449  | *****  |
| S. e. = 25.554   | 686.056  | ****   |
|                  | 847.663  | ****   |
|                  | 1009.270 | *      |
|                  | 1170.877 | *      |
|                  | 1332.484 | *      |
|                  | 1494.091 | *      |
|                  |          |        |

# K-L overoptimism (stabilized) (Default model)

|                  |         | i       |
|------------------|---------|---------|
|                  |         |         |
|                  | -78.546 | *       |
|                  | -31.354 | *       |
|                  | 15.838  | **      |
|                  | 63.030  | ****    |
|                  | 110.222 | *****   |
|                  | 157.415 | ******  |
|                  | 204.607 | ******* |
| N = 200          | 251.799 | ******  |
| Mean = $240.109$ | 298.991 | *****   |
| S. $e. = 8.235$  | 346.183 | *****   |
|                  | 393.376 | *****   |
|                  | 440.568 | **      |
|                  | 487.760 | **      |
|                  | 534.952 | *       |
|                  | 582.144 | *       |
|                  |         |         |

# Matrices (Group number 1 - Default model)

## **Total Effects (Group number 1 - Default model)**

|       | LDS  | MET   | JOB   | OGC   |
|-------|------|-------|-------|-------|
| MET   | .838 | .000  | .000  | .000  |
| JOB   | .483 | .576  | .000  | .000  |
| OGC   | .665 | .794  | .864  | .000  |
| OGC7  | .603 | .720  | .784  | .907  |
| OGC6  | .549 | .655  | .713  | .825  |
| OGC5  | .626 | .747  | .813  | .940  |
| OGC4  | .586 | .699  | .761  | .880  |
| OGC3  | .612 | .730  | .795  | .919  |
| OGC2  | .666 | .795  | .865  | 1.001 |
| OGC1  | .665 | .794  | .864  | 1.000 |
| JOB4  | .574 | .685  | 1.188 | .000  |
| JOB3  | .491 | .586  | 1.017 | .000  |
| JOB2  | .519 | .620  | 1.075 | .000  |
| JOB1  | .483 | .576  | 1.000 | .000  |
| LDS10 | .520 | .621  | .000  | .000  |
| MET06 | .860 | 1.027 | .000  | .000  |
| MET05 | .854 | 1.020 | .000  | .000  |
| MET03 | .885 | 1.057 | .000  | .000  |
| MET02 | .866 | 1.034 | .000  | .000  |
| MET01 | .838 | 1.000 | .000  | .000  |

|      | LDS   | MET  | JOB  | OGC  |
|------|-------|------|------|------|
| LDS8 | .867  | .000 | .000 | .000 |
| LDS7 | .967  | .000 | .000 | .000 |
| LDS6 | .965  | .000 | .000 | .000 |
| LDS5 | 1.025 | .000 | .000 | .000 |
| LDS4 | .993  | .000 | .000 | .000 |
| LDS3 | 1.099 | .000 | .000 | .000 |
| LDS2 | .963  | .000 | .000 | .000 |
| LDS1 | 1.000 | .000 | .000 | .000 |

# **Standardized Total Effects (Group number 1 - Default model)**

|       | 1.00 | ) (FF | TOD  | 0.00 |
|-------|------|-------|------|------|
|       | LDS  | MET   | JOB  | OGC  |
| MET   | .841 | .000  | .000 | .000 |
| JOB   | .534 | .634  | .000 | .000 |
| OGC   | .609 | .725  | .716 | .000 |
| OGC7  | .400 | .476  | .470 | .657 |
| OGC6  | .456 | .543  | .536 | .749 |
| OGC5  | .504 | .599  | .592 | .827 |
| OGC4  | .502 | .596  | .590 | .823 |
| OGC3  | .500 | .594  | .587 | .820 |
| OGC2  | .503 | .598  | .591 | .825 |
| OGC1  | .503 | .598  | .592 | .826 |
| JOB4  | .475 | .565  | .891 | .000 |
| JOB3  | .406 | .482  | .760 | .000 |
| JOB2  | .436 | .519  | .818 | .000 |
| JOB1  | .430 | .511  | .805 | .000 |
| LDS10 | .353 | .420  | .000 | .000 |
| MET06 | .651 | .774  | .000 | .000 |
| MET05 | .619 | .736  | .000 | .000 |
| MET03 | .664 | .789  | .000 | .000 |
| MET02 | .671 | .798  | .000 | .000 |
| MET01 | .666 | .791  | .000 | .000 |
| LDS8  | .743 | .000  | .000 | .000 |
| LDS7  | .755 | .000  | .000 | .000 |
| LDS6  | .812 | .000  | .000 | .000 |
| LDS5  | .813 | .000  | .000 | .000 |
| LDS4  | .783 | .000  | .000 | .000 |
| LDS3  | .791 | .000  | .000 | .000 |
| LDS2  | .706 | .000  | .000 | .000 |
| LDS1  | .785 | .000  | .000 | .000 |

# **Direct Effects (Group number 1 - Default model)**

|     | LDS  | MET  | JOB  | OGC  |
|-----|------|------|------|------|
| MET | .838 | .000 | .000 | .000 |

|       | LDS   | MET   | JOB   | OGC   |
|-------|-------|-------|-------|-------|
| JOB   | .000  | .576  | .000  | .000  |
| OGC   | .000  | .296  | .864  | .000  |
| OGC7  | .000  | .000  | .000  | .907  |
| OGC6  | .000  | .000  | .000  | .825  |
| OGC5  | .000  | .000  | .000  | .940  |
| OGC4  | .000  | .000  | .000  | .880  |
| OGC3  | .000  | .000  | .000  | .919  |
| OGC2  | .000  | .000  | .000  | 1.001 |
| OGC1  | .000  | .000  | .000  | 1.000 |
| JOB4  | .000  | .000  | 1.188 | .000  |
| JOB3  | .000  | .000  | 1.017 | .000  |
| JOB2  | .000  | .000  | 1.075 | .000  |
| JOB1  | .000  | .000  | 1.000 | .000  |
| LDS10 | .000  | .621  | .000  | .000  |
| MET06 | .000  | 1.027 | .000  | .000  |
| MET05 | .000  | 1.020 | .000  | .000  |
| MET03 | .000  | 1.057 | .000  | .000  |
| MET02 | .000  | 1.034 | .000  | .000  |
| MET01 | .000  | 1.000 | .000  | .000  |
| LDS8  | .867  | .000  | .000  | .000  |
| LDS7  | .967  | .000  | .000  | .000  |
| LDS6  | .965  | .000  | .000  | .000  |
| LDS5  | 1.025 | .000  | .000  | .000  |
| LDS4  | .993  | .000  | .000  | .000  |
| LDS3  | 1.099 | .000  | .000  | .000  |
| LDS2  | .963  | .000  | .000  | .000  |
| LDS1  | 1.000 | .000  | .000  | .000  |

# **Standardized Direct Effects (Group number 1 - Default model)**

|      | LDS  | MET  | JOB  | OGC  |
|------|------|------|------|------|
| MET  | .841 | .000 | .000 | .000 |
| JOB  | .000 | .634 | .000 | .000 |
| OGC  | .000 | .270 | .716 | .000 |
| OGC7 | .000 | .000 | .000 | .657 |
| OGC6 | .000 | .000 | .000 | .749 |
| OGC5 | .000 | .000 | .000 | .827 |
| OGC4 | .000 | .000 | .000 | .823 |
| OGC3 | .000 | .000 | .000 | .820 |
| OGC2 | .000 | .000 | .000 | .825 |
| OGC1 | .000 | .000 | .000 | .826 |
| JOB4 | .000 | .000 | .891 | .000 |
| JOB3 | .000 | .000 | .760 | .000 |
| JOB2 | .000 | .000 | .818 | .000 |

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| JOB1  | .000 | .000 | .805 | .000 |
| LDS10 | .000 | .420 | .000 | .000 |
| MET06 | .000 | .774 | .000 | .000 |
| MET05 | .000 | .736 | .000 | .000 |
| MET03 | .000 | .789 | .000 | .000 |
| MET02 | .000 | .798 | .000 | .000 |
| MET01 | .000 | .791 | .000 | .000 |
| LDS8  | .743 | .000 | .000 | .000 |
| LDS7  | .755 | .000 | .000 | .000 |
| LDS6  | .812 | .000 | .000 | .000 |
| LDS5  | .813 | .000 | .000 | .000 |
| LDS4  | .783 | .000 | .000 | .000 |
| LDS3  | .791 | .000 | .000 | .000 |
| LDS2  | .706 | .000 | .000 | .000 |
| LDS1  | .785 | .000 | .000 | .000 |

**Indirect Effects (Group number 1 - Default model)** 

|       | LDC  | MET  | IOD  | 000  |
|-------|------|------|------|------|
|       | LDS  | MET  | JOB  | OGC  |
| MET   | .000 | .000 | .000 | .000 |
| JOB   | .483 | .000 | .000 | .000 |
| OGC   | .665 | .498 | .000 | .000 |
| OGC7  | .603 | .720 | .784 | .000 |
| OGC6  | .549 | .655 | .713 | .000 |
| OGC5  | .626 | .747 | .813 | .000 |
| OGC4  | .586 | .699 | .761 | .000 |
| OGC3  | .612 | .730 | .795 | .000 |
| OGC2  | .666 | .795 | .865 | .000 |
| OGC1  | .665 | .794 | .864 | .000 |
| JOB4  | .574 | .685 | .000 | .000 |
| JOB3  | .491 | .586 | .000 | .000 |
| JOB2  | .519 | .620 | .000 | .000 |
| JOB1  | .483 | .576 | .000 | .000 |
| LDS10 | .520 | .000 | .000 | .000 |
| MET06 | .860 | .000 | .000 | .000 |
| MET05 | .854 | .000 | .000 | .000 |
| MET03 | .885 | .000 | .000 | .000 |
| MET02 | .866 | .000 | .000 | .000 |
| MET01 | .838 | .000 | .000 | .000 |
| LDS8  | .000 | .000 | .000 | .000 |
| LDS7  | .000 | .000 | .000 | .000 |
| LDS6  | .000 | .000 | .000 | .000 |
| LDS5  | .000 | .000 | .000 | .000 |
| LDS4  | .000 | .000 | .000 | .000 |

|      | LDS  | MET  | JOB  | OGC  |
|------|------|------|------|------|
| LDS3 | .000 | .000 | .000 | .000 |
| LDS2 | .000 | .000 | .000 | .000 |
| LDS1 | .000 | .000 | .000 | .000 |

#### $Standardized\ Indirect\ Effects\ (Group\ number\ 1\ -\ Default\ model)$

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .000 | .000 | .000 | .000 |
| JOB   | .534 | .000 | .000 | .000 |
| OGC   | .609 | .454 | .000 | .000 |
| OGC7  | .400 | .476 | .470 | .000 |
| OGC6  | .456 | .543 | .536 | .000 |
| OGC5  | .504 | .599 | .592 | .000 |
| OGC4  | .502 | .596 | .590 | .000 |
| OGC3  | .500 | .594 | .587 | .000 |
| OGC2  | .503 | .598 | .591 | .000 |
| OGC1  | .503 | .598 | .592 | .000 |
| JOB4  | .475 | .565 | .000 | .000 |
| JOB3  | .406 | .482 | .000 | .000 |
| JOB2  | .436 | .519 | .000 | .000 |
| JOB1  | .430 | .511 | .000 | .000 |
| LDS10 | .353 | .000 | .000 | .000 |
| MET06 | .651 | .000 | .000 | .000 |
| MET05 | .619 | .000 | .000 | .000 |
| MET03 | .664 | .000 | .000 | .000 |
| MET02 | .671 | .000 | .000 | .000 |
| MET01 | .666 | .000 | .000 | .000 |
| LDS8  | .000 | .000 | .000 | .000 |
| LDS7  | .000 | .000 | .000 | .000 |
| LDS6  | .000 | .000 | .000 | .000 |
| LDS5  | .000 | .000 | .000 | .000 |
| LDS4  | .000 | .000 | .000 | .000 |
| LDS3  | .000 | .000 | .000 | .000 |
| LDS2  | .000 | .000 | .000 | .000 |
| LDS1  | .000 | .000 | .000 | .000 |

**Standardized Total Effects (Group number 1 - Default model)** 

# Standardized Total Effects - Lower Bounds (BC) (Group number 1 - Default model)

|      | LDS  | MET  | JOB  | OGC  |
|------|------|------|------|------|
| MET  | .774 | .000 | .000 | .000 |
| JOB  | .439 | .541 | .000 | .000 |
| OGC  | .493 | .651 | .621 | .000 |
| OGC7 | .296 | .363 | .390 | .572 |

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| OGC6  | .362 | .427 | .438 | .617 |
| OGC5  | .415 | .516 | .515 | .761 |
| OGC4  | .400 | .516 | .492 | .775 |
| OGC3  | .415 | .505 | .502 | .762 |
| OGC2  | .404 | .522 | .498 | .767 |
| OGC1  | .418 | .510 | .487 | .769 |
| JOB4  | .396 | .477 | .859 | .000 |
| JOB3  | .316 | .394 | .673 | .000 |
| JOB2  | .364 | .431 | .757 | .000 |
| JOB1  | .331 | .414 | .743 | .000 |
| LDS10 | .247 | .289 | .000 | .000 |
| MET06 | .557 | .687 | .000 | .000 |
| MET05 | .540 | .624 | .000 | .000 |
| MET03 | .580 | .719 | .000 | .000 |
| MET02 | .583 | .737 | .000 | .000 |
| MET01 | .561 | .717 | .000 | .000 |
| LDS8  | .647 | .000 | .000 | .000 |
| LDS7  | .687 | .000 | .000 | .000 |
| LDS6  | .746 | .000 | .000 | .000 |
| LDS5  | .744 | .000 | .000 | .000 |
| LDS4  | .723 | .000 | .000 | .000 |
| LDS3  | .713 | .000 | .000 | .000 |
| LDS2  | .591 | .000 | .000 | .000 |
| LDS1  | .712 | .000 | .000 | .000 |

# Standardized Total Effects - Upper Bounds (BC) (Group number 1 - Default model)

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .909 | .000 | .000 | .000 |
| JOB   | .635 | .721 | .000 | .000 |
| OGC   | .730 | .809 | .822 | .000 |
| OGC7  | .494 | .558 | .554 | .726 |
| OGC6  | .604 | .662 | .639 | .845 |
| OGC5  | .622 | .698 | .675 | .872 |
| OGC4  | .631 | .700 | .672 | .881 |
| OGC3  | .610 | .682 | .679 | .872 |
| OGC2  | .617 | .689 | .676 | .870 |
| OGC1  | .608 | .672 | .679 | .867 |
| JOB4  | .592 | .655 | .926 | .000 |
| JOB3  | .523 | .588 | .836 | .000 |
| JOB2  | .538 | .609 | .866 | .000 |
| JOB1  | .525 | .594 | .857 | .000 |
| LDS10 | .448 | .523 | .000 | .000 |
| MET06 | .744 | .842 | .000 | .000 |

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET05 | .715 | .799 | .000 | .000 |
| MET03 | .731 | .833 | .000 | .000 |
| MET02 | .778 | .858 | .000 | .000 |
| MET01 | .743 | .843 | .000 | .000 |
| LDS8  | .800 | .000 | .000 | .000 |
| LDS7  | .819 | .000 | .000 | .000 |
| LDS6  | .869 | .000 | .000 | .000 |
| LDS5  | .871 | .000 | .000 | .000 |
| LDS4  | .840 | .000 | .000 | .000 |
| LDS3  | .851 | .000 | .000 | .000 |
| LDS2  | .799 | .000 | .000 | .000 |
| LDS1  | .845 | .000 | .000 | .000 |

Standardized Total Effects - Two Tailed Significance (BC) (Group number 1 - Default model)

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .005 |      |      |      |
| JOB   | .003 | .006 | •••  |      |
| OGC   | .004 | .004 | .009 |      |
| OGC7  | .006 | .009 | .009 | .010 |
| OGC6  | .003 | .005 | .005 | .009 |
| OGC5  | .003 | .003 | .005 | .008 |
| OGC4  | .004 | .004 | .009 | .004 |
| OGC3  | .003 | .004 | .005 | .005 |
| OGC2  | .004 | .003 | .007 | .007 |
| OGC1  | .004 | .005 | .011 | .009 |
| JOB4  | .002 | .004 | .006 |      |
| JOB3  | .004 | .004 | .007 |      |
| JOB2  | .003 | .005 | .014 |      |
| JOB1  | .006 | .009 | .013 |      |
| LDS10 | .012 | .016 |      |      |
| MET06 | .004 | .005 |      |      |
| MET05 | .003 | .012 |      |      |
| MET03 | .009 | .023 | •••  |      |
| MET02 | .005 | .009 |      |      |
| MET01 | .007 | .011 |      |      |
| LDS8  | .020 |      |      |      |
| LDS7  | .007 |      |      |      |
| LDS6  | .004 |      |      |      |
| LDS5  | .009 |      |      |      |
| LDS4  | .007 |      |      |      |
| LDS3  | .014 |      |      |      |
| LDS2  | .007 |      |      |      |
| LDS1  | .009 |      |      |      |

#### **Standardized Direct Effects (Group number 1 - Default model)**

#### Standardized Direct Effects - Lower Bounds (BC) (Group number 1 - Default model)

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .774 | .000 | .000 | .000 |
| JOB   | .000 | .541 | .000 | .000 |
| OGC   | .000 | .167 | .621 | .000 |
| OGC7  | .000 | .000 | .000 | .572 |
| OGC6  | .000 | .000 | .000 | .617 |
| OGC5  | .000 | .000 | .000 | .761 |
| OGC4  | .000 | .000 | .000 | .775 |
| OGC3  | .000 | .000 | .000 | .762 |
| OGC2  | .000 | .000 | .000 | .767 |
| OGC1  | .000 | .000 | .000 | .769 |
| JOB4  | .000 | .000 | .859 | .000 |
| JOB3  | .000 | .000 | .673 | .000 |
| JOB2  | .000 | .000 | .757 | .000 |
| JOB1  | .000 | .000 | .743 | .000 |
| LDS10 | .000 | .289 | .000 | .000 |
| MET06 | .000 | .687 | .000 | .000 |
| MET05 | .000 | .624 | .000 | .000 |
| MET03 | .000 | .719 | .000 | .000 |
| MET02 | .000 | .737 | .000 | .000 |
| MET01 | .000 | .717 | .000 | .000 |
| LDS8  | .647 | .000 | .000 | .000 |
| LDS7  | .687 | .000 | .000 | .000 |
| LDS6  | .746 | .000 | .000 | .000 |
| LDS5  | .744 | .000 | .000 | .000 |
| LDS4  | .723 | .000 | .000 | .000 |
| LDS3  | .713 | .000 | .000 | .000 |
| LDS2  | .591 | .000 | .000 | .000 |
| LDS1  | .712 | .000 | .000 | .000 |

# Standardized Direct Effects - Upper Bounds (BC) (Group number 1 - Default model)

|      | LDS  | MET  | JOB  | OGC  |
|------|------|------|------|------|
| MET  | .909 | .000 | .000 | .000 |
| JOB  | .000 | .721 | .000 | .000 |
| OGC  | .000 | .372 | .822 | .000 |
| OGC7 | .000 | .000 | .000 | .726 |
| OGC6 | .000 | .000 | .000 | .845 |
| OGC5 | .000 | .000 | .000 | .872 |
| OGC4 | .000 | .000 | .000 | .881 |
| OGC3 | .000 | .000 | .000 | .872 |
| OGC2 | .000 | .000 | .000 | .870 |

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| OGC1  | .000 | .000 | .000 | .867 |
| JOB4  | .000 | .000 | .926 | .000 |
| JOB3  | .000 | .000 | .836 | .000 |
| JOB2  | .000 | .000 | .866 | .000 |
| JOB1  | .000 | .000 | .857 | .000 |
| LDS10 | .000 | .523 | .000 | .000 |
| MET06 | .000 | .842 | .000 | .000 |
| MET05 | .000 | .799 | .000 | .000 |
| MET03 | .000 | .833 | .000 | .000 |
| MET02 | .000 | .858 | .000 | .000 |
| MET01 | .000 | .843 | .000 | .000 |
| LDS8  | .800 | .000 | .000 | .000 |
| LDS7  | .819 | .000 | .000 | .000 |
| LDS6  | .869 | .000 | .000 | .000 |
| LDS5  | .871 | .000 | .000 | .000 |
| LDS4  | .840 | .000 | .000 | .000 |
| LDS3  | .851 | .000 | .000 | .000 |
| LDS2  | .799 | .000 | .000 | .000 |
| LDS1  | .845 | .000 | .000 | .000 |

# Standardized Direct Effects - Two Tailed Significance (BC) (Group number 1 - Default model)

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .005 |      |      |      |
| JOB   |      | .006 |      |      |
| OGC   |      | .011 | .009 |      |
| OGC7  |      |      |      | .010 |
| OGC6  |      |      |      | .009 |
| OGC5  |      |      |      | .008 |
| OGC4  |      |      |      | .004 |
| OGC3  |      |      |      | .005 |
| OGC2  |      |      |      | .007 |
| OGC1  |      |      |      | .009 |
| JOB4  | •••  |      | .006 |      |
| JOB3  | •••  |      | .007 |      |
| JOB2  | •••  |      | .014 |      |
| JOB1  | •••  |      | .013 |      |
| LDS10 | •••  | .016 | •••  |      |
| MET06 |      | .005 |      |      |
| MET05 | •••  | .012 | •••  |      |
| MET03 |      | .023 |      |      |
| MET02 |      | .009 |      |      |
| MET01 |      | .011 |      |      |
| LDS8  | .020 | •••  | •••  | •••  |

|      | LDS  | MET | JOB | OGC |
|------|------|-----|-----|-----|
| LDS7 | .007 |     |     |     |
| LDS6 | .004 |     |     |     |
| LDS5 | .009 |     |     |     |
| LDS4 | .007 |     |     |     |
| LDS3 | .014 |     |     |     |
| LDS2 | .007 |     |     |     |
| LDS1 | .009 |     | ••• | ••• |

**Standardized Indirect Effects (Group number 1 - Default model)** 

Standardized Indirect Effects - Lower Bounds (BC) (Group number 1 - Default model)

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .000 | .000 | .000 | .000 |
| JOB   | .439 | .000 | .000 | .000 |
| OGC   | .493 | .375 | .000 | .000 |
| OGC7  | .296 | .363 | .390 | .000 |
| OGC6  | .362 | .427 | .438 | .000 |
| OGC5  | .415 | .516 | .515 | .000 |
| OGC4  | .400 | .516 | .492 | .000 |
| OGC3  | .415 | .505 | .502 | .000 |
| OGC2  | .404 | .522 | .498 | .000 |
| OGC1  | .418 | .510 | .487 | .000 |
| JOB4  | .396 | .477 | .000 | .000 |
| JOB3  | .316 | .394 | .000 | .000 |
| JOB2  | .364 | .431 | .000 | .000 |
| JOB1  | .331 | .414 | .000 | .000 |
| LDS10 | .247 | .000 | .000 | .000 |
| MET06 | .557 | .000 | .000 | .000 |
| MET05 | .540 | .000 | .000 | .000 |
| MET03 | .580 | .000 | .000 | .000 |
| MET02 | .583 | .000 | .000 | .000 |
| MET01 | .561 | .000 | .000 | .000 |
| LDS8  | .000 | .000 | .000 | .000 |
| LDS7  | .000 | .000 | .000 | .000 |
| LDS6  | .000 | .000 | .000 | .000 |
| LDS5  | .000 | .000 | .000 | .000 |
| LDS4  | .000 | .000 | .000 | .000 |
| LDS3  | .000 | .000 | .000 | .000 |
| LDS2  | .000 | .000 | .000 | .000 |
| LDS1  | .000 | .000 | .000 | .000 |

Standardized Indirect Effects - Upper Bounds (BC) (Group number 1 - Default model)

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .000 | .000 | .000 | .000 |
| JOB   | .635 | .000 | .000 | .000 |
| OGC   | .730 | .543 | .000 | .000 |
| OGC7  | .494 | .558 | .554 | .000 |
| OGC6  | .604 | .662 | .639 | .000 |
| OGC5  | .622 | .698 | .675 | .000 |
| OGC4  | .631 | .700 | .672 | .000 |
| OGC3  | .610 | .682 | .679 | .000 |
| OGC2  | .617 | .689 | .676 | .000 |
| OGC1  | .608 | .672 | .679 | .000 |
| JOB4  | .592 | .655 | .000 | .000 |
| JOB3  | .523 | .588 | .000 | .000 |
| JOB2  | .538 | .609 | .000 | .000 |
| JOB1  | .525 | .594 | .000 | .000 |
| LDS10 | .448 | .000 | .000 | .000 |
| MET06 | .744 | .000 | .000 | .000 |
| MET05 | .715 | .000 | .000 | .000 |
| MET03 | .731 | .000 | .000 | .000 |
| MET02 | .778 | .000 | .000 | .000 |
| MET01 | .743 | .000 | .000 | .000 |
| LDS8  | .000 | .000 | .000 | .000 |
| LDS7  | .000 | .000 | .000 | .000 |
| LDS6  | .000 | .000 | .000 | .000 |
| LDS5  | .000 | .000 | .000 | .000 |
| LDS4  | .000 | .000 | .000 | .000 |
| LDS3  | .000 | .000 | .000 | .000 |
| LDS2  | .000 | .000 | .000 | .000 |
| LDS1  | .000 | .000 | .000 | .000 |

# Standardized Indirect Effects - Two Tailed Significance (BC) (Group number 1 - Default model)

|      | LDS  | MET  | JOB  | OGC |
|------|------|------|------|-----|
| MET  |      |      |      |     |
| JOB  | .003 |      |      |     |
| OGC  | .004 | .005 |      |     |
| OGC7 | .006 | .009 | .009 |     |
| OGC6 | .003 | .005 | .005 |     |
| OGC5 | .003 | .003 | .005 |     |
| OGC4 | .004 | .004 | .009 |     |
| OGC3 | .003 | .004 | .005 |     |
| OGC2 | .004 | .003 | .007 |     |
| OGC1 | .004 | .005 | .011 |     |
| JOB4 | .002 | .004 |      |     |
| JOB3 | .004 | .004 |      |     |

|       | LDS  | MET  | JOB | OGC |
|-------|------|------|-----|-----|
| JOB2  | .003 | .005 |     |     |
| JOB1  | .006 | .009 |     |     |
| LDS10 | .012 |      |     |     |
| MET06 | .004 |      |     |     |
| MET05 | .003 |      |     |     |
| MET03 | .009 |      |     |     |
| MET02 | .005 |      |     |     |
| MET01 | .007 |      |     |     |
| LDS8  |      |      |     |     |
| LDS7  |      |      |     |     |
| LDS6  |      |      |     |     |
| LDS5  |      |      |     |     |
| LDS4  |      |      |     |     |
| LDS3  |      |      |     |     |
| LDS2  |      |      |     |     |
| LDS1  |      |      | ••• |     |

# APPENDIX 4 - BUILDING ORGANIZATIONAL COMMITMENT: THE ANALYSIS OF INDICATORS

**Descriptives** 

|                    | N   | Minimum | Maximum | Mean | Std. Deviation |
|--------------------|-----|---------|---------|------|----------------|
| OGC1               | 249 | 1       | 5       | 3.74 | .856           |
| OGC2               | 249 | 1       | 5       | 3.68 | .857           |
| OGC3               | 249 | 1       | 5       | 3.90 | .792           |
| OGC4               | 249 | 1       | 5       | 3.96 | .756           |
| OGC5               | 249 | 1       | 5       | 3.85 | .804           |
| OGC6               | 249 | 1       | 5       | 3.82 | .778           |
| OGC7               | 249 | 1       | 5       | 3.41 | .976           |
| EV1                | 249 | 1       | 5       | 4.00 | .833           |
| EV2                | 249 | 1       | 5       | 3.73 | .784           |
| EV3                | 249 | 1       | 5       | 3.96 | .805           |
| EV4                | 249 | 1       | 5       | 4.00 | .854           |
| IM01               | 249 | 1       | 5       | 3.96 | .750           |
| IM02               | 249 | 1       | 5       | 3.93 | .762           |
| IM03               | 249 | 1       | 5       | 3.87 | .769           |
| IM04               | 249 | 1       | 5       | 3.82 | .797           |
| EM01               | 249 | 1       | 5       | 3.73 | .909           |
| EM02               | 249 | 1       | 5       | 3.57 | .918           |
| EM03               | 249 | 1       | 5       | 3.28 | .976           |
| EM04               | 249 | 1       | 5       | 3.71 | .911           |
| POS1               | 249 | 1       | 5       | 3.79 | .770           |
| POS2               | 249 | 1       | 5       | 3.75 | .791           |
| POS3               | 249 | 1       | 5       | 3.77 | .813           |
| POS4               | 249 | 1       | 5       | 3.78 | .775           |
| POS5               | 249 | 1       | 5       | 3.45 | .879           |
| POS6               | 249 | 1       | 5       | 3.49 | .907           |
| OI01               | 249 | 1       | 5       | 3.81 | .737           |
| OI02               | 249 | 1       | 5       | 3.84 | .812           |
| OI03               | 249 | 1       | 5       | 3.60 | .888           |
| OI04               | 249 | 1       | 5       | 3.62 | .922           |
| OI05               | 249 | 1       | 5       | 3.82 | .833           |
| OI06               | 249 | 1       | 5       | 3.71 | .905           |
| OI07               | 249 | 1       | 5       | 3.99 | .868           |
| Valid N (listwise) | 249 |         |         |      |                |

# Reliability

#### Notes

| -                      |                                |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 08-MAR-2020 22:31:50                         |
| Comments               |                                |                                              |
| Input                  | Data                           | E:\Dropbox\D Drive\LY DAN                    |
|                        |                                | THANH\NGHIÊN CỨU SINH\PHASE 2-               |
|                        |                                | SWINBURNE\KÉT QUẢ KHẢO SÁT\NHAP              |
|                        |                                | DU LIEU THO\FINAL TONG HOP DU                |
|                        |                                | LIEU\SPSS\DATA FULL-3BIÉNCHÍNH-              |
|                        |                                | MET-JOB-OGC\FINAL-DATA SPSS.sav              |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
|                        | Matrix Input                   |                                              |
| Missing Value Handling | Definition of Missing          | User-defined missing values are treated as   |
|                        |                                | missing.                                     |
|                        | Cases Used                     | Statistics are based on all cases with valid |
|                        |                                | data for all variables in the procedure.     |
| Syntax                 |                                | RELIABILITY                                  |
|                        |                                | /VARIABLES=OGC1 OGC2 OGC3 OGC4               |
|                        |                                | OGC5 OGC6 OGC7 EV1 EV2 EV3 EV4               |
|                        |                                | IM01 IM02 IM03 IM04 EM01 EM02 EM03           |
|                        |                                | EM04 POS1 POS2 POS3 POS4 POS5                |
|                        |                                | POS6 OI01 OI02 OI03 OI04 OI05 OI06           |
|                        |                                | OI07                                         |
|                        |                                | /SCALE('ALL VARIABLES') ALL                  |
|                        |                                | /MODEL=ALPHA                                 |
|                        |                                | /STATISTICS=DESCRIPTIVE SCALE                |
|                        |                                | /SUMMARY=TOTAL MEANS VARIANCE.               |
| Resources              | Processor Time                 | 00:00:00.00                                  |
|                        | Elapsed Time                   | 00:00:00.01                                  |

#### Warnings

The determinant of the covariance matrix is zero or approximately zero. Statistics based on its inverse matrix cannot be computed and they are displayed as system missing values.

#### Scale: ALL VARIABLES

**Case Processing Summary** 

| Case i rocessing cuminary |           |     |       |  |  |
|---------------------------|-----------|-----|-------|--|--|
|                           |           | N   | %     |  |  |
| Cases                     | Valid     | 249 | 100.0 |  |  |
|                           | Excludeda | 0   | .0    |  |  |

|       | 1   |       |
|-------|-----|-------|
| Total | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

|                  | Cronbach's<br>Alpha Based |            |
|------------------|---------------------------|------------|
|                  | on                        |            |
|                  | Standardized              |            |
| Cronbach's Alpha | Items                     | N of Items |
| .966             | .967                      | 32         |

**Item Statistics** 

| -    | item Statistics |                |     |  |  |  |  |
|------|-----------------|----------------|-----|--|--|--|--|
|      | Mean            | Std. Deviation | N   |  |  |  |  |
| OGC1 | 3.74            | .856           | 249 |  |  |  |  |
| OGC2 | 3.68            | .857           | 249 |  |  |  |  |
| OGC3 | 3.90            | .792           | 249 |  |  |  |  |
| OGC4 | 3.96            | .756           | 249 |  |  |  |  |
| OGC5 | 3.85            | .804           | 249 |  |  |  |  |
| OGC6 | 3.82            | .778           | 249 |  |  |  |  |
| OGC7 | 3.41            | .976           | 249 |  |  |  |  |
| EV1  | 4.00            | .833           | 249 |  |  |  |  |
| EV2  | 3.73            | .784           | 249 |  |  |  |  |
| EV3  | 3.96            | .805           | 249 |  |  |  |  |
| EV4  | 4.00            | .854           | 249 |  |  |  |  |
| IM01 | 3.96            | .750           | 249 |  |  |  |  |
| IM02 | 3.93            | .762           | 249 |  |  |  |  |
| IM03 | 3.87            | .769           | 249 |  |  |  |  |
| IM04 | 3.82            | .797           | 249 |  |  |  |  |
| EM01 | 3.73            | .909           | 249 |  |  |  |  |
| EM02 | 3.57            | .918           | 249 |  |  |  |  |
| EM03 | 3.28            | .976           | 249 |  |  |  |  |
| EM04 | 3.71            | .911           | 249 |  |  |  |  |
| POS1 | 3.79            | .770           | 249 |  |  |  |  |
| POS2 | 3.75            | .791           | 249 |  |  |  |  |
| POS3 | 3.77            | .813           | 249 |  |  |  |  |
| POS4 | 3.78            | .775           | 249 |  |  |  |  |
| POS5 | 3.45            | .879           | 249 |  |  |  |  |
| POS6 | 3.49            | .907           | 249 |  |  |  |  |
| OI01 | 3.81            | .737           | 249 |  |  |  |  |
| OI02 | 3.84            | .812           | 249 |  |  |  |  |
| OI03 | 3.60            | .888           | 249 |  |  |  |  |
| OI04 | 3.62            | .922           | 249 |  |  |  |  |
| OI05 | 3.82            | .833           | 249 |  |  |  |  |

| OI06 | 3.71 | .905 | 249 |
|------|------|------|-----|
| OI07 | 3.99 | .868 | 249 |

**Summary Item Statistics** 

|                | · · · · · · · · · · · · · · · · · · · |         |         |       |           |          |            |
|----------------|---------------------------------------|---------|---------|-------|-----------|----------|------------|
|                |                                       |         |         |       | Maximum / |          |            |
|                | Mean                                  | Minimum | Maximum | Range | Minimum   | Variance | N of Items |
| Item Means     | 3.760                                 | 3.281   | 4.000   | .719  | 1.219     | .032     | 32         |
| Item Variances | .705                                  | .543    | .953    | .410  | 1.754     | .013     | 32         |

**Item-Total Statistics** 

|      |               | item-           | Total Statistics  |             |               |
|------|---------------|-----------------|-------------------|-------------|---------------|
|      |               |                 |                   | Squared     | Cronbach's    |
|      | Scale Mean if | Scale Variance  | Corrected Item-   | Multiple    | Alpha if Item |
|      | Item Deleted  | if Item Deleted | Total Correlation | Correlation | Deleted       |
| OGC1 | 116.59        | 329.752         | .749              |             | .965          |
| OGC2 | 116.65        | 329.115         | .769              |             | .965          |
| OGC3 | 116.43        | 331.512         | .749              |             | .965          |
| OGC4 | 116.37        | 331.726         | .780              |             | .965          |
| OGC5 | 116.48        | 330.718         | .766              |             | .965          |
| OGC6 | 116.51        | 333.130         | .705              |             | .965          |
| OGC7 | 116.92        | 329.155         | .668              |             | .965          |
| EV1  | 116.33        | 333.343         | .649              |             | .966          |
| EV2  | 116.59        | 336.960         | .562              |             | .966          |
| EV3  | 116.37        | 333.791         | .657              |             | .965          |
| EV4  | 116.33        | 333.957         | .611              |             | .966          |
| IM01 | 116.37        | 335.476         | .645              |             | .966          |
| IM02 | 116.40        | 335.063         | .650              |             | .966          |
| IM03 | 116.46        | 334.467         | .665              |             | .965          |
| IM04 | 116.51        | 332.485         | .710              |             | .965          |
| EM01 | 116.60        | 331.943         | .634              |             | .966          |
| EM02 | 116.76        | 331.879         | .629              |             | .966          |
| EM03 | 117.05        | 334.344         | .517              |             | .967          |
| EM04 | 116.62        | 334.542         | .552              |             | .966          |
| POS1 | 116.54        | 335.088         | .641              |             | .966          |
| POS2 | 116.58        | 334.107         | .658              |             | .965          |
| POS3 | 116.56        | 331.602         | .726              |             | .965          |
| POS4 | 116.55        | 333.700         | .688              |             | .965          |
| POS5 | 116.88        | 333.700         | .601              |             | .966          |
| POS6 | 116.84        | 330.955         | .666              |             | .965          |
| OI01 | 116.52        | 332.138         | .785              |             | .965          |
| OI02 | 116.49        | 331.356         | .736              |             | .965          |
| OI03 | 116.73        | 329.812         | .718              |             | .965          |
| OI04 | 116.71        | 332.666         | .602              |             | .966          |
| OI05 | 116.51        | 329.146         | .791              |             | .965          |
| OI06 | 116.62        | 328.640         | .741              | .           | .965          |
|      |               |                 |                   |             |               |

| OI07 | 116.34 | 329.153 | .757 | .965 |
|------|--------|---------|------|------|

#### Scale Statistics

| Mean   | Variance | Std. Deviation | N of Items |
|--------|----------|----------------|------------|
| 120.33 | 353.762  | 18.809         | 32         |

# **Factor Analysis**

#### Notes

| Output Created Comments Input  Data  E\Dropbox\D Drive\LY DAN THANH\NGHI\\ C\(^{\pi}\U \) SINH\PHASE 2-SWINBURNE\K\\\ C\(^{\pi}\U \) SINH\PHASE 2-SWINBURNE\K\\\\ KH\\(^{\pi}\O \) S\(^{\pi}\U \) SINH\PHASE 2-SWINBURNE\K\\\\ H\(^{\pi}\O \) DIVE\(^{\pi}\U \) DATA  KH\(^{\pi}\O \) S\(^{\pi}\U \) SINH\PHASE 2-SWINBURNE\K\\\\\ H\(^{\pi}\O \) DU LIEU\SPSS\DATA FULL- 3B\(^{\pi}\O \) SINH\PHASE 2-SWINBURNE\K\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | Notes                          | •                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Input  Data  E:\Dropbox\D Drive\LY DAN THANH\NGHIËN CÜU SINH\PHASE 2-SWINBURNE\KÉT QUÂ KHÂO SÁT\NHAP DU LIEU THO\FINAL TONG HOP DU LIEUSPS\DATA FULL- 3BI\(\beta\)C\(\text{CHIN}\)HMET-JOB-OGC\(\text{FINAL-DATA}\) SPS\(\text{Sav}\) Active Dataset Filter Weight Splif File N of Rows in Working Data File Definition of Missing Missing Value Handling  Definition of Missing Cases Used  MISSING=EXCLUDE: User-defined missing values are treated as missing. LISTWISE: Statistics are based on cases with no missing values for any variable used. FACTOR /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 Ol01 Ol02 Ol03 Ol04 Ol05 Ol06 Ol07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 Ol01 Ol02 Ol03 Ol04 Ol05 Ol06 Ol07 //PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION //FORMAT BLANK(,50) /CRITERIA MINEIGEN(1) ITERATE(25) //EXTRACTION PC //CRITERIA ITERATE(25) //ROTATION VARIMAX /METHOD=CORRELATION. | Output Created         |                                | 08-MAR-2020 23:03:41                                                                                                                  |
| CÜU SINHIPHASE 2-SWINBURNEWÊT QUÂ KHÂO SÁTINHAP DU LIEU THOI-FINAL TONG HOP DU LIEUSPESSIDATA FULL- 3BIÉNCHÍNH-MET-JOB-OGCIFINAL-DATA SPSS.sav  Active Dataset Filter Weight Split File N of Rows in Working Data File Definition of Missing MISSING=EXCLUDE: User-defined missing values are treated as missing. LISTWISE: Statistics are based on cases with no missing values for any variable used. FACTOR /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /MISSING LISTWISE //ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 //PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION //PORMAT BLANK(,50) //CRITERIA INREIGEN(1) ITERATE(25) //EXTRACTION PC //CRITERIA ITERATE(25) //ROTATION VARIMAX //METHOD=CORRELATION.                                                                                                                                              | Comments               |                                |                                                                                                                                       |
| Filter Weight Split File N of Rows in Working Data File Definition of Missing Missing Value Handling Definition of Missing Cases Used LISTWISE: Statistics are based on cases with no missing values for any variable used. FACTOR /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                  | Input                  | Data                           | CỨU SINH\PHASE 2-SWINBURNE\KÉT QUẢ KHẢO SÁT\NHAP DU LIEU THO\FINAL TONG HOP DU LIEU\SPSS\DATA FULL- 3BIÉNCHÍNH-MET-JOB-OGC\FINAL-DATA |
| Weight Split File N of Rows in Working Data File Definition of Missing  Cases Used  MISSING=EXCLUDE: User-defined missing values are treated as missing. LISTWISE: Statistics are based on cases with no missing values for any variable used. FACTOR  /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 //PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) //CRITERIA MINEIGEN(1) ITERATE(25) //EXTRACTION PC //CRITERIA ITERATE(25) //ROTATION VARIMAX //METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                        |                        | Active Dataset                 | DataSet1                                                                                                                              |
| Split File N of Rows in Working Data File Definition of Missing MISSING=EXCLUDE: User-defined missing values are treated as missing. LISTWISE: Statistics are based on cases with no missing values for any variable used. FACTOR /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 Ol01 Ol02 Ol03 Ol04 Ol05 Ol06 Ol07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 Ol01 Ol02 Ol03 Ol04 Ol05 Ol06 Ol07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 Ol01 Ol02 Ol03 Ol04 Ol05 Ol06 Ol07 //PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION //FORMAT BLANK(.50) //CRITERIA MINEIGEN(1) ITERATE(25) //EXTRACTION PC //CRITERIA ITERATE(25) //ROTATION VARIMAX //METHOD=CORRELATION.                                                                                                                                                                       |                        | Filter                         | <none></none>                                                                                                                         |
| N of Rows in Working Data File Definition of Missing  Missing Value Handling Definition of Missing  Cases Used  LISTWISE: Statistics are based on cases with no missing values for any variable used.  FACTOR /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                       |                        | Weight                         | <none></none>                                                                                                                         |
| Missing Value Handling  Definition of Missing  MISSING=EXCLUDE: User-defined missing values are treated as missing.  LISTWISE: Statistics are based on cases with no missing values for any variable used.  Syntax  FACTOR  /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07  /MISSING LISTWISE  /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07  /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION  /FORMAT BLANK(.50)  /CRITERIA MINEIGEN(1) ITERATE(25)  /EXTRACTION PC  /CRITERIA ITERATE(25)  /ROTATION VARIMAX  /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                              |                        | Split File                     | <none></none>                                                                                                                         |
| values are treated as missing.  LISTWISE: Statistics are based on cases with no missing values for any variable used.  FACTOR  //ARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07  //MISSING LISTWISE  /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07  //PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION  /FORMAT BLANK(.50)  /CRITERIA MINEIGEN(1) ITERATE(25)  //EXTRACTION PC  /CRITERIA ITERATE(25)  /ROTATION VARIMAX  /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | N of Rows in Working Data File | 249                                                                                                                                   |
| Cases Used  LISTWISE: Statistics are based on cases with no missing values for any variable used.  FACTOR  /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07 /MISSING LISTWISE  /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing                                                                                                 |
| no missing values for any variable used.  FACTOR  //VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 //MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 //PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                | values are treated as missing.                                                                                                        |
| Syntax  FACTOR  /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07  /MISSING LISTWISE  /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07  /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION  /FORMAT BLANK(.50)  /CRITERIA MINEIGEN(1) ITERATE(25)  /EXTRACTION PC  /CRITERIA ITERATE(25)  /ROTATION VARIMAX  /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Cases Used                     | LISTWISE: Statistics are based on cases with                                                                                          |
| /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                | no missing values for any variable used.                                                                                              |
| POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Syntax                 |                                | FACTOR                                                                                                                                |
| IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /MISSING LISTWISE /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                | /VARIABLES EV1 EV2 EV3 EV4 POS1 POS2                                                                                                  |
| OI01 OI02 OI03 OI04 OI05 OI06 OI07  /MISSING LISTWISE  /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                | POS3 POS4 POS5 POS6 IM01 IM02 IM03                                                                                                    |
| /MISSING LISTWISE  /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2  POS3 POS4 POS5 POS6 IM01 IM02 IM03  IM04 EM01 EM02 EM03 EM04  OI01 OI02 OI03 OI04 OI05 OI06 OI07  /PRINT INITIAL CORRELATION KMO  EXTRACTION ROTATION  /FORMAT BLANK(.50)  /CRITERIA MINEIGEN(1) ITERATE(25)  /EXTRACTION PC  /CRITERIA ITERATE(25)  /ROTATION VARIMAX  /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                | IM04 EM01 EM02 EM03 EM04                                                                                                              |
| /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2 POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                | Ol01 Ol02 Ol03 Ol04 Ol05 Ol06 Ol07                                                                                                    |
| POS3 POS4 POS5 POS6 IM01 IM02 IM03 IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                | /MISSING LISTWISE                                                                                                                     |
| IM04 EM01 EM02 EM03 EM04 OI01 OI02 OI03 OI04 OI05 OI06 OI07 /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                | /ANALYSIS EV1 EV2 EV3 EV4 POS1 POS2                                                                                                   |
| OI01 OI02 OI03 OI04 OI05 OI06 OI07  /PRINT INITIAL CORRELATION KMO  EXTRACTION ROTATION  /FORMAT BLANK(.50)  /CRITERIA MINEIGEN(1) ITERATE(25)  /EXTRACTION PC  /CRITERIA ITERATE(25)  /ROTATION VARIMAX  /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                | POS3 POS4 POS5 POS6 IM01 IM02 IM03                                                                                                    |
| /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                | IM04 EM01 EM02 EM03 EM04                                                                                                              |
| EXTRACTION ROTATION  /FORMAT BLANK(.50)  /CRITERIA MINEIGEN(1) ITERATE(25)  /EXTRACTION PC  /CRITERIA ITERATE(25)  /ROTATION VARIMAX  /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                | Ol01 Ol02 Ol03 Ol04 Ol05 Ol06 Ol07                                                                                                    |
| /FORMAT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                | /PRINT INITIAL CORRELATION KMO                                                                                                        |
| /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                | EXTRACTION ROTATION                                                                                                                   |
| /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                | /FORMAT BLANK(.50)                                                                                                                    |
| /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                | /CRITERIA MINEIGEN(1) ITERATE(25)                                                                                                     |
| /ROTATION VARIMAX /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                | /EXTRACTION PC                                                                                                                        |
| /METHOD=CORRELATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                | /CRITERIA ITERATE(25)                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                | /ROTATION VARIMAX                                                                                                                     |
| Resources Processor Time 00:00:00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                | /METHOD=CORRELATION.                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Resources              | Processor Time                 | 00:00:00.08                                                                                                                           |

| I | Elapsed Time            | 00:00:00.06           |
|---|-------------------------|-----------------------|
|   | Maximum Memory Required | 74408 (72.664K) bytes |

|                 |            |       | -     |      |       |      |      |      |      |      |      |      |      |      |      |      |      |      |      | T        |          |          |          |          |          |          |
|-----------------|------------|-------|-------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------|----------|----------|----------|----------|----------|----------|
|                 |            |       |       |      |       | POS  | POS  | POS  | POS  | POS  | POS  |      |      |      |      | EM0  | EM   | EM   | EM   | OI       |
|                 |            | EV1   | EV2   | EV3  | EV4   | 1    | 2    | 3    | 4    | 5    | 6    | IM01 | IM02 | IM03 | IM04 | 1    | 02   | 03   | 04   | 01       | 02       | 03       | 04       | 05       | 06       | 07       |
| Correlatio<br>n | EV1        | 1.000 | .580  | .692 | .629  | .427 | .490 | .601 | .494 | .331 | .438 | .568 | .515 | .403 | .407 | .421 | .269 | .129 | .362 | .5<br>32 | .4<br>83 | .4<br>42 | .3<br>62 | .5<br>46 | .3<br>64 |          |
|                 | EV2        | .580  | 1.000 | .621 | .546  | .402 | .399 | .467 | .494 | .365 | .340 | .414 | .435 | .356 | .341 | .414 | .268 | .156 | .320 | .4<br>07 | .3<br>51 | .3<br>63 | .3<br>45 | .3<br>91 | .3       | .3<br>98 |
|                 | EV3        |       |       | 1.00 |       |      |      |      |      |      |      |      |      |      |      |      |      |      |      | .4       | .4       | .3       | .3       | .4       | .4       | .5       |
|                 |            | .692  | .621  | 0    | .739  | .473 | .464 | .638 | .560 | .444 | .411 | .438 | .443 | .395 | .434 | .447 | .335 | .237 | .357 | 68       | 77       | 82       | 58       | 88       | 92       | 19       |
|                 | EV4        | .629  | .546  | .739 | 1.000 | .477 | .422 | .550 | .474 | .454 | .377 | .453 | .433 | .460 | .419 | .393 | .260 | .161 | .377 | .4<br>73 | .4<br>35 | .3<br>49 | .3<br>10 | .4<br>07 | .4<br>26 | .4<br>29 |
|                 | POS<br>1   | .427  | .402  | .473 | .477  | 1.00 | .635 | .619 | .531 | .496 | .463 | .509 | .436 | .505 | .502 | .374 | .376 | .341 | .372 | .4<br>76 | .4<br>94 | .3<br>79 | .3       | .4<br>45 | .4<br>74 | .4<br>54 |
|                 | POS        | .490  | .399  | .464 | .422  | .635 | 1.00 | .725 | .659 | .494 | .554 | .438 | .339 | .389 | .412 | .427 | .457 | .437 | .378 | .4       | .4       | .4       | .3       | .5       | .5       | .4       |
|                 | 2<br>POS   |       |       |      |       |      | 0    | 1.00 |      |      |      |      |      |      |      |      |      |      |      | .5       | .4       | .4       | .3       | .5       | .5       | .5       |
|                 | 3          | .601  | .467  | .638 | .550  | .619 | .725 | 0    | .803 | .527 | .578 | .527 | .424 | .461 | .501 | .484 | .458 | .391 | .383 | 11       | 69       | 04       | 73       | 35       | 18       |          |
|                 | POS<br>4   | .494  | .494  | .560 | .474  | .531 | .659 | .803 | 1.00 | .530 | .589 | .415 | .350 | .357 | .384 | .476 | .457 | .440 | .382 | .4<br>62 | .4<br>43 | .4<br>75 | .3<br>16 | .4<br>76 | .5<br>35 | .5<br>12 |
|                 | POS<br>5   | .331  | .365  | .444 | .454  | .496 | .494 | .527 | .530 | 1.00 | .612 | .321 | .329 | .392 | .423 | .388 | .506 | .493 | .295 | .3       | .3<br>83 | .4<br>14 | .3<br>25 | .3<br>89 | .5<br>33 | .3<br>29 |
|                 | POS        | .438  | .340  | .411 | .377  | .463 | .554 | .578 | .589 | .612 | 1.00 | .396 | .433 | .422 | .442 | .399 | .535 | .492 | .280 | .4       | .4       | .4       | .3       | .5       | .5       | .4       |
|                 | 6<br>IM01  | FC0   | 44.4  | 420  | 452   | 500  | 420  | F07  | 445  | 224  | 0    | 1.00 | 700  | F40  | 507  | 454  | 244  | 107  | 272  | .5       | .4       | .3       | .4       | .5       | .3       | .5       |
|                 | IM02       | .568  | .414  | .438 | .453  | .509 | .438 | .527 | .415 | .321 | .396 | 0    | .708 | .543 | .507 | .451 | .344 | .197 | .372 | 18       | 72       | 75       | 50       | 24       | 93       |          |
|                 | IIVIU∠     | .515  | .435  | .443 | .433  | .436 | .339 | .424 | .350 | .329 | .433 | .708 | 1.00 | .556 | .551 | .463 | .397 | .237 | .349 | .5       | .5<br>23 | .4<br>49 | .4       | .5       | .3<br>46 | .5<br>35 |
|                 | IM03       | .403  | .356  | .395 | .460  | .505 | .389 | .461 | .357 | .392 | .422 | .543 | .556 | 1.00 | .776 | .353 | .388 | .313 | .353 | .5<br>59 | .5<br>79 | .5<br>42 | .4<br>52 | .5<br>61 |          |          |
|                 | IM04       | .407  | .341  | .434 | .419  | .502 | .412 | .501 | .384 | .423 | .442 | .507 | .551 | .776 | 1.00 | .493 | .454 | .399 | .447 | .6       | .5       | .5       | .3       | .5       |          |          |
|                 | EM0        |       |       | ,    |       |      |      |      |      |      |      | ,    |      | 0    | 0    | 1.00 |      | ,    |      | .4       | .4       | .4       | .3       | .4       | .4       |          |
|                 | 1          | .421  | .414  | .447 | .393  | .374 | .427 | .484 | .476 | .388 | .399 | .451 | .463 | .353 | .493 | 0    | .539 | .490 | .508 | 28       | 27       | 11       | 82       | 53       |          |          |
|                 | EM0<br>_ 2 | .269  | .268  | .335 | .260  | .376 | .457 | .458 | .457 | .506 | .535 | .344 | .397 | .388 | .454 | .539 | 1.00 | .764 | .405 | .4       | .4<br>54 | .4<br>35 | .3<br>79 | .4<br>60 |          |          |

|     | <b>L</b> | 1    | 1    | 1    |      |      | 1 1  | 1 1  |      |      | i i  |      | i i  |      |      | 1    | 1 1  |      |    |    |    |    |    |    |    |
|-----|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|----|----|----|----|----|----|
| EN  | .129     | .156 | .237 | .161 | .341 | .437 | .391 | .440 | .493 | .492 | .197 | .237 | .313 | .399 | .490 | .764 | 1.00 | .397 | .3 | .3 | .4 | .2 | .3 | .4 | .3 |
| 3   |          |      | į    |      |      |      |      |      |      |      |      |      |      |      |      |      | 0    |      | 33 | 73 | 22 | 32 | 49 | 39 |    |
| EN. | .362     | .320 | .357 | .377 | .372 | .378 | .383 | .382 | .295 | .280 | .372 | .349 | .353 | .447 | .508 | .405 | .397 | 1.00 | .4 | .5 | .3 | .3 | .3 | .3 |    |
| 4   |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 0    | 02 | 14 | 89 | 51 | 94 | 42 | 09 |
| Ole |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 1. | .6 | .6 | .5 | .8 | .6 | .6 |
|     | .532     | .407 | .468 | .473 | .476 | .476 | .511 | .462 | .388 | .496 | .518 | .565 | .559 | .605 | .428 | .433 | .333 | .402 | 00 | 69 | 65 | 26 | 04 | 23 | 45 |
|     | 20       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | U  |    |    |    | 5  |    |    |
| Ol  | .483     | .351 | .477 | .435 | .494 | .420 | .469 | .443 | .383 | .418 | .472 | .523 | .579 | .596 | .427 | .454 | .373 | .514 | .6 | 1. | .6 | .5 | .6 | .5 | .5 |
|     | .403     | .331 | .477 | .433 | .494 | .420 | .409 | .443 | .303 | .410 | .412 | .525 | .579 | .590 | .421 | .404 | .3/3 | .514 | 69 | 0  | 83 | 05 | 43 | 89 | 86 |
| Ol  | 12       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |    | 1. |    |    |    |    |
| Oli | .442     | .363 | .382 | .349 | .379 | .430 | .404 | .475 | .414 | .481 | .375 | .449 | .542 | .545 | .411 | .435 | .422 | .389 | .6 | .6 | 00 | .5 | .6 | .6 | .5 |
|     | . 442    | .500 | .502 | .545 | .575 | .430 | .404 | .475 | .717 | .401 | .575 | .445 | .542 | .545 |      | .755 | .722 | .505 | 65 | 83 | 0  | 38 | 89 | 69 | 79 |
| Ol  | 04       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |    |    | 1. |    |    |    |
|     | .362     | .345 | .358 | .310 | .342 | .354 | .373 | .316 | .325 | .343 | .450 | .428 | .452 | .392 | .382 | .379 | .232 | .351 | .5 | .5 | .5 | 00 | .6 | .5 | .5 |
|     |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 26 | 05 | 38 | 0  | 26 | 73 | 58 |
| Ol  | 05       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |    |    |    | 1. |    |    |
|     | .546     | .391 | .488 | .407 | .445 | .519 | .535 | .476 | .389 | .509 | .524 | .502 | .561 | .576 | .453 | .460 | .349 | .394 | .8 | .6 | .6 | .6 | 00 | .6 | .7 |
|     |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 04 | 43 | 89 | 26 | 0  | 70 | 22 |
| Ole | 06       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |    |    |    |    | 1. |    |
|     | .364     | .380 | .492 | .426 | .474 | .557 | .518 | .535 | .533 | .501 | .393 | .346 | .512 | .557 | .444 | .511 | .439 | .342 | .6 | .5 | .6 | .5 | .6 | 00 | .6 |
|     |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 23 | 89 | 69 | 73 | 70 | 0  | 57 |
| Ol  | 07       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |    |    |    |    |    |    | 1. |
|     | .502     | .398 | .519 | .429 | .454 | .436 | .516 | .512 | .329 | .473 | .525 | .535 | .487 | .533 | .568 | .495 | .323 | .409 | .6 | .5 |    | .5 | .7 | .6 | 00 |
|     |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 45 | 86 | 79 | 58 | 22 | 57 | 0  |

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of | aiser-Meyer-Olkin Measure of Sampling Adequacy. |      |  |  |  |  |
|-------------------------------|-------------------------------------------------|------|--|--|--|--|
| Bartlett's Test of Sphericity | 4599.510                                        |      |  |  |  |  |
|                               | df                                              | 300  |  |  |  |  |
|                               | Sig.                                            | .000 |  |  |  |  |

Communalities

| Communanties |         |            |  |  |  |  |  |  |  |  |
|--------------|---------|------------|--|--|--|--|--|--|--|--|
|              | Initial | Extraction |  |  |  |  |  |  |  |  |
| EV1          | 1.000   | .719       |  |  |  |  |  |  |  |  |
| EV2          | 1.000   | .562       |  |  |  |  |  |  |  |  |
| EV3          | 1.000   | .721       |  |  |  |  |  |  |  |  |
| EV4          | 1.000   | .668       |  |  |  |  |  |  |  |  |
| POS1         | 1.000   | .523       |  |  |  |  |  |  |  |  |
| POS2         | 1.000   | .662       |  |  |  |  |  |  |  |  |
| POS3         | 1.000   | .768       |  |  |  |  |  |  |  |  |
| POS4         | 1.000   | .739       |  |  |  |  |  |  |  |  |
| POS5         | 1.000   | .585       |  |  |  |  |  |  |  |  |
| POS6         | 1.000   | .595       |  |  |  |  |  |  |  |  |
| IM01         | 1.000   | .647       |  |  |  |  |  |  |  |  |
| IM02         | 1.000   | .686       |  |  |  |  |  |  |  |  |
| IM03         | 1.000   | .600       |  |  |  |  |  |  |  |  |
| IM04         | 1.000   | .656       |  |  |  |  |  |  |  |  |
| EM01         | 1.000   | .596       |  |  |  |  |  |  |  |  |
| EM02         | 1.000   | .747       |  |  |  |  |  |  |  |  |
| EM03         | 1.000   | .821       |  |  |  |  |  |  |  |  |
| EM04         | 1.000   | .494       |  |  |  |  |  |  |  |  |
| OI01         | 1.000   | .740       |  |  |  |  |  |  |  |  |
| OI02         | 1.000   | .660       |  |  |  |  |  |  |  |  |
| OI03         | 1.000   | .720       |  |  |  |  |  |  |  |  |
| OI04         | 1.000   | .559       |  |  |  |  |  |  |  |  |
| OI05         | 1.000   | .804       |  |  |  |  |  |  |  |  |
| OI06         | 1.000   | .755       |  |  |  |  |  |  |  |  |
| OI07         | 1.000   | .650       |  |  |  |  |  |  |  |  |

Extraction Method: Principal Component Analysis.

**Total Variance Explained** 

|   |           |                     |          | 101        | ai vailai | ice Explained |            |                          |          |            |  |  |
|---|-----------|---------------------|----------|------------|-----------|---------------|------------|--------------------------|----------|------------|--|--|
|   |           |                     |          |            | Extra     | action Sums o | f Squared  | Rotation Sums of Squared |          |            |  |  |
| ı |           | Initial Eigenvalues |          |            | Loadings  | }             | Loadings   |                          |          |            |  |  |
|   |           |                     | % of     | Cumulative |           | % of          | Cumulative |                          | % of     | Cumulative |  |  |
|   | Component | Total               | Variance | %          | Total     | Variance      | %          | Total                    | Variance | %          |  |  |

237

|    | ,      |        |         | ,      |        |        |       |        |        |
|----|--------|--------|---------|--------|--------|--------|-------|--------|--------|
| 1  | 12.123 | 48.492 | 48.492  | 12.123 | 48.492 | 48.492 | 5.088 | 20.351 | 20.351 |
| 2  | 1.793  | 7.172  | 55.664  | 1.793  | 7.172  | 55.664 | 4.756 | 19.024 | 39.375 |
| 3  | 1.699  | 6.794  | 62.458  | 1.699  | 6.794  | 62.458 | 3.851 | 15.404 | 54.779 |
| 4  | 1.064  | 4.255  | 66.713  | 1.064  | 4.255  | 66.713 | 2.983 | 11.934 | 66.713 |
| 5  | .969   | 3.877  | 70.590  |        |        |        |       |        |        |
| 6  | .806   | 3.226  | 73.816  |        |        |        |       |        |        |
| 7  | .759   | 3.036  | 76.851  |        |        |        |       |        |        |
| 8  | .616   | 2.465  | 79.317  |        |        |        |       |        |        |
| 9  | .564   | 2.256  | 81.573  |        |        |        |       |        |        |
| 10 | .502   | 2.008  | 83.581  |        |        |        |       |        |        |
| 11 | .457   | 1.827  | 85.408  |        |        |        |       |        |        |
| 12 | .431   | 1.725  | 87.133  |        |        |        |       |        |        |
| 13 | .401   | 1.604  | 88.737  |        |        |        |       |        |        |
| 14 | .363   | 1.452  | 90.189  |        |        |        |       |        |        |
| 15 | .336   | 1.346  | 91.535  |        |        |        |       |        |        |
| 16 | .314   | 1.257  | 92.791  |        |        |        |       |        |        |
| 17 | .294   | 1.177  | 93.969  |        |        |        |       |        |        |
| 18 | .268   | 1.072  | 95.041  |        |        |        |       |        |        |
| 19 | .243   | .972   | 96.013  |        |        |        |       |        |        |
| 20 | .230   | .921   | 96.934  |        |        |        |       |        |        |
| 21 | .197   | .787   | 97.721  |        |        |        |       |        |        |
| 22 | .159   | .637   | 98.358  |        |        |        |       |        |        |
| 23 | .152   | .607   | 98.965  |        |        |        |       |        |        |
| 24 | .131   | .526   | 99.491  |        |        |        |       |        |        |
| 25 | .127   | .509   | 100.000 |        |        |        |       |        |        |

Extraction Method: Principal Component Analysis.

#### **Component Matrix**<sup>a</sup>

|      |      | Comp | onent |   |
|------|------|------|-------|---|
|      | 1    | 2    | 3     | 4 |
| EV1  | .694 |      |       |   |
| EV2  | .604 |      |       |   |
| EV3  | .710 |      |       |   |
| EV4  | .659 |      |       |   |
| POS1 | .692 |      |       |   |
| POS2 | .710 |      |       |   |
| POS3 | .778 |      |       |   |
| POS4 | .728 |      |       |   |
| POS5 | .637 |      |       |   |

| POS6 | .690 |      |  |
|------|------|------|--|
| IM01 | .685 |      |  |
| IM02 | .677 |      |  |
| IM03 | .701 |      |  |
| IM04 | .734 |      |  |
| EM01 | .664 |      |  |
| EM02 | .648 | .513 |  |
| EM03 | .539 | .653 |  |
| EM04 | .576 |      |  |
| OI01 | .784 |      |  |
| OI02 | .753 |      |  |
| OI03 | .726 |      |  |
| OI04 | .624 |      |  |
| OI05 | .797 |      |  |
| OI06 | .760 |      |  |
| OI07 | .767 |      |  |

Extraction Method: Principal Component Analysis.

a. 4 components extracted.

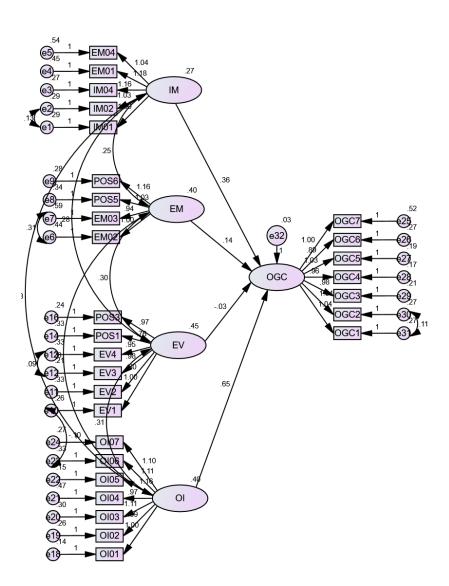
**Rotated Component Matrix**<sup>a</sup>

|      |      | Comp | onent |      |
|------|------|------|-------|------|
|      | 1    | 2    | 3     | 4    |
| EV1  |      | .740 |       |      |
| EV2  |      | .684 |       |      |
| EV3  |      | .773 |       |      |
| EV4  |      | .742 |       |      |
| POS1 |      | .505 |       |      |
| POS2 |      | .531 | .546  |      |
| POS3 |      | .684 |       |      |
| POS4 |      | .610 | .555  |      |
| POS5 |      |      | .624  |      |
| POS6 |      |      | .583  |      |
| IM01 |      |      |       | .594 |
| IM02 |      |      |       | .674 |
| IM03 | .522 |      |       | .503 |
| IM04 |      |      |       | .560 |
| EM01 |      |      |       | .549 |
| EM02 |      |      | .742  |      |
| EM03 |      |      | .850  |      |
| EM04 |      |      |       | .571 |
| OI01 | .735 |      |       |      |

| OI02 | .642 |  |  |
|------|------|--|--|
| OI03 | .768 |  |  |
| OI04 | .693 |  |  |
| OI05 | .798 |  |  |
| OI06 | .712 |  |  |
| OI07 | .638 |  |  |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.


a. Rotation converged in 14 iterations.

**Component Transformation Matrix** 

| Component | 1    | 2    | 3    | 4    |
|-----------|------|------|------|------|
| 1         | .584 | .539 | .450 | .408 |
| 2         | .147 | 690  | .705 | 076  |
| 3         | 612  | .464 | .545 | 336  |
| 4         | 512  | 138  | .063 | .845 |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.



# **Model Fit Summary**

#### **CMIN**

| Model              | NPAR | CMIN     | DF  | P    | CMIN/DF |
|--------------------|------|----------|-----|------|---------|
| Default model      | 73   | 997.061  | 362 | .000 | 2.754   |
| Saturated model    | 435  | .000     | 0   |      |         |
| Independence model | 29   | 5899.287 | 406 | .000 | 14.530  |

## RMR, GFI

| Model              | RMR  | GFI   | AGFI | PGFI |
|--------------------|------|-------|------|------|
| Default model      | .041 | .781  | .737 | .650 |
| Saturated model    | .000 | 1.000 |      |      |
| Independence model | .335 | .128  | .066 | .119 |

#### **Baseline Comparisons**

| Model              | NFI    | RFI  | IFI    | TLI  | CFI   |
|--------------------|--------|------|--------|------|-------|
| Model              | Delta1 | rho1 | Delta2 | rho2 | СГІ   |
| Default model      | .831   | .810 | .885   | .870 | .884  |
| Saturated model    | 1.000  |      | 1.000  |      | 1.000 |
| Independence model | .000   | .000 | .000   | .000 | .000  |

## Parsimony-Adjusted Measures

| Model              | PRATIO | PNFI | PCFI |
|--------------------|--------|------|------|
| Default model      | .892   | .741 | .789 |
| Saturated model    | .000   | .000 | .000 |
| Independence model | 1.000  | .000 | .000 |

#### NCP

| Model              | NCP      | LO 90    | HI 90    |
|--------------------|----------|----------|----------|
| Default model      | 635.061  | 544.872  | 732.892  |
| Saturated model    | .000     | .000     | .000     |
| Independence model | 5493.287 | 5248.227 | 5744.777 |

## **FMIN**

| Model              | FMIN   | F0     | LO 90  | HI 90  |
|--------------------|--------|--------|--------|--------|
| Default model      | 4.020  | 2.561  | 2.197  | 2.955  |
| Saturated model    | .000   | .000   | .000   | .000   |
| Independence model | 23.787 | 22.150 | 21.162 | 23.164 |

#### **RMSEA**

| Model              | RMSEA | LO 90 | HI 90 | PCLOSE |
|--------------------|-------|-------|-------|--------|
| Default model      | .084  | .078  | .090  | .000   |
| Independence model | .234  | .228  | .239  | .000   |

#### AIC

| Model              | AIC      | BCC      | BIC      | CAIC     |
|--------------------|----------|----------|----------|----------|
| Default model      | 1143.061 | 1163.153 | 1399.835 | 1472.835 |
| Saturated model    | 870.000  | 989.725  | 2400.092 | 2835.092 |
| Independence model | 5957.287 | 5965.268 | 6059.293 | 6088.293 |

#### **ECVI**

| Model              | ECVI   | LO 90  | HI 90  | MECVI  |
|--------------------|--------|--------|--------|--------|
| Default model      | 4.609  | 4.245  | 5.004  | 4.690  |
| Saturated model    | 3.508  | 3.508  | 3.508  | 3.991  |
| Independence model | 24.021 | 23.033 | 25.035 | 24.054 |

#### **HOELTER**

| Model              | HOELTER | <b>HOELTER</b> |
|--------------------|---------|----------------|
| Model              | .05     | .01            |
| Default model      | 102     | 107            |
| Independence model | 20      | 20             |

#### **Notes for Model (Default model)**

#### Computation of degrees of freedom (Default model)

Number of distinct sample moments: 435 Number of distinct parameters to be estimated: 73 Degrees of freedom (435 - 73): 362

#### Result (Default model)

Minimum was achieved Chi-square = 997.061 Degrees of freedom = 362 Probability level = .000

#### Scalar Estimates (Group number 1 - Default model) Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Default model)

| Regression we | -8  | Estimate | S.E. | C.R.   | P    | Label |
|---------------|-----|----------|------|--------|------|-------|
| OGC <         | IM  | .364     | .155 | 2.350  | .019 |       |
| OGC <         | EM  | .138     | .067 | 2.051  | .040 |       |
| OGC <         | EV  | 034      | .071 | 475    | .635 |       |
| OGC <         | OI  | .649     | .099 | 6.584  | ***  |       |
| IM01 <        | IM  | 1.000    |      |        |      |       |
| IM02 <        | IM  | 1.033    | .077 | 13.443 | ***  |       |
| IM04 <        | IM  | 1.162    | .108 | 10.719 | ***  |       |
| EM01 <        | IM  | 1.178    | .122 | 9.631  | ***  |       |
| EM04 <        | IM  | 1.040    | .121 | 8.561  | ***  |       |
| EM02 <        | EM  | 1.000    |      |        |      |       |
| EM03 <        | EM  | .944     | .071 | 13.303 | ***  |       |
| POS5 <        | EM  | 1.033    | .103 | 10.018 | ***  |       |
| POS6 <        | EM  | 1.163    | .109 | 10.637 | ***  |       |
| EV1 <         | EV  | 1.000    |      |        |      |       |
| EV2 <         | EV  | .796     | .071 | 11.217 | ***  |       |
| EV3 <         | EV  | .981     | .070 | 14.045 | ***  |       |
| EV4 <         | EV  | .945     | .077 | 12.359 | ***  |       |
| POS1 <        | EV  | .758     | .070 | 10.815 | ***  |       |
| POS3 <        | EV  | .967     | .071 | 13.667 | ***  |       |
| OI01 <        | OI  | 1.000    |      |        |      |       |
| OI02 <        | OI  | .994     | .066 | 15.104 | ***  |       |
| OI03 <        | OI  | 1.105    | .071 | 15.525 | ***  |       |
| OI04 <        | OI  | .971     | .080 | 12.083 | ***  |       |
| OI05 <        | OI  | 1.164    | .061 | 19.072 | ***  |       |
| OI06 <        | OI  | 1.112    | .073 | 15.274 | ***  |       |
| OI07 <        | OI  | 1.101    | .069 | 16.019 | ***  |       |
| OGC7 <        | OGC | 1.000    |      |        |      |       |
| OGC6 <        | OGC | .887     | .082 | 10.832 | ***  |       |
| OGC5 <        | OGC | 1.031    | .086 | 12.016 | ***  |       |
| OGC4 <        | OGC | .960     | .081 | 11.912 | ***  |       |
| OGC3 <        | OGC | .981     | .084 | 11.657 | ***  |       |
| OGC2 <        | OGC | 1.038    | .091 | 11.420 | ***  |       |
| OGC1 <        | OGC | 1.038    | .091 | 11.436 | ***  |       |

#### **Standardized Regression Weights: (Group number 1 - Default model)**

|     |   |    | Estimate |
|-----|---|----|----------|
| OGC | < | IM | .287     |
| OGC | < | EM | .132     |

|      |   |     | Estimate |
|------|---|-----|----------|
| OGC  | < | EV  | 035      |
| OGC  | < | OI  | .625     |
| IM01 | < | IM  | .690     |
| IM02 | < | IM  | .702     |
| IM04 | < | IM  | .755     |
| EM01 | < | IM  | .671     |
| EM04 | < | IM  | .591     |
| EM02 | < | EM  | .688     |
| EM03 | < | EM  | .611     |
| POS5 | < | EM  | .743     |
| POS6 | < | EM  | .810     |
| EV1  | < | EV  | .796     |
| EV2  | < | EV  | .679     |
| EV3  | < | EV  | .817     |
| EV4  | < | EV  | .741     |
| POS1 | < | EV  | .659     |
| POS3 | < | EV  | .796     |
| OI01 | < | OI  | .859     |
| OI02 | < | OI  | .775     |
| OI03 | < | OI  | .788     |
| OI04 | < | OI  | .667     |
| OI05 | < | OI  | .885     |
| OI06 | < | OI  | .775     |
| OI07 | < | OI  | .803     |
| OGC7 | < | OGC | .673     |
| OGC6 | < | OGC | .749     |
| OGC5 | < | OGC | .843     |
| OGC4 | < | OGC | .834     |
| OGC3 | < | OGC | .814     |
| OGC2 | < | OGC | .795     |
| OGC1 | < | OGC | .797     |

# $Covariances: (Group \ number \ 1 \ - \ Default \ model)$

|          | Estimate | S.E. | C.R.  | P   | Label |
|----------|----------|------|-------|-----|-------|
| IM <> EM | .246     | .038 | 6.519 | *** |       |
| IM <> EV | .282     | .038 | 7.339 | *** |       |
| IM <> OI | .281     | .036 | 7.782 | *** |       |
| EM <> EV | .302     | .044 | 6.800 | *** |       |
| EM <> OI | .283     | .040 | 6.994 | *** |       |
| EV <> OI | .311     | .040 | 7.846 | *** |       |

|            | Estimate | S.E. | C.R.   | P   | Label |
|------------|----------|------|--------|-----|-------|
| e30 <> e31 | .105     | .021 | 5.062  | *** |       |
| e1 <> e2   | .127     | .024 | 5.304  | *** |       |
| e12 <> e13 | .092     | .023 | 3.995  | *** |       |
| e6 <> e7   | .307     | .045 | 6.766  | *** |       |
| e10 <> e23 | 104      | .022 | -4.691 | *** |       |

# **Correlations: (Group number 1 - Default model)**

|       |    |     | Estimate |
|-------|----|-----|----------|
| IM <  | <> | EM  | .755     |
| IM <  | <> | EV  | .817     |
| IM <  | <> | OI  | .860     |
| EM <  | <> | EV  | .717     |
| EM <  | <> | OI  | .710     |
| EV <  | <> | OI  | .737     |
| e30 < | <> | e31 | .393     |
| e1 <  | <> | e2  | .434     |
| e12 < | <> | e13 | .345     |
| e6 <  | <> | e7  | .598     |
| e10 < | <> | e23 | 356      |

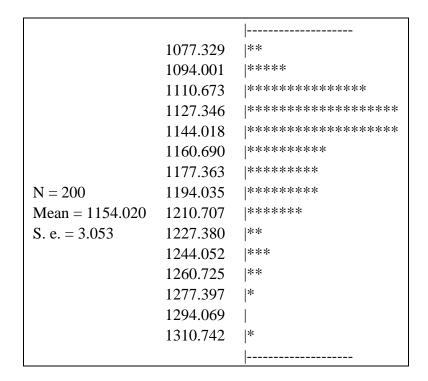
## Variances: (Group number 1 - Default model)

|     | Estimate | S.E. | C.R.   | P   | Label |
|-----|----------|------|--------|-----|-------|
| IM  | .267     | .045 | 5.902  | *** |       |
| EM  | .397     | .069 | 5.738  | *** |       |
| EV  | .447     | .061 | 7.372  | *** |       |
| OI  | .400     | .048 | 8.402  | *** |       |
| e32 | .034     | .010 | 3.424  | *** |       |
| e1  | .294     | .030 | 9.782  | *** |       |
| e2  | .293     | .030 | 9.691  | *** |       |
| e3  | .272     | .030 | 9.208  | *** |       |
| e4  | .453     | .045 | 9.999  | *** |       |
| e5  | .537     | .052 | 10.406 | *** |       |
| e6  | .441     | .048 | 9.274  | *** |       |
| e7  | .595     | .060 | 9.845  | *** |       |
| e8  | .345     | .040 | 8.588  | *** |       |
| e9  | .282     | .039 | 7.159  | *** |       |
| e10 | .259     | .029 | 9.015  | *** |       |
| e11 | .330     | .033 | 10.123 | *** |       |
| e12 | .215     | .025 | 8.621  | *** |       |

|     | Estimate | S.E. | C.R.   | P   | Label |
|-----|----------|------|--------|-----|-------|
| e13 | .328     | .035 | 9.473  | *** |       |
| e14 | .334     | .033 | 10.230 | *** |       |
| e16 | .241     | .027 | 9.059  | *** |       |
| e18 | .141     | .015 | 9.445  | *** |       |
| e19 | .262     | .026 | 10.243 | *** |       |
| e20 | .298     | .029 | 10.161 | *** |       |
| e21 | .470     | .044 | 10.662 | *** |       |
| e22 | .150     | .017 | 8.972  | *** |       |
| e23 | .328     | .032 | 10.230 | *** |       |
| e24 | .266     | .026 | 10.054 | *** |       |
| e25 | .519     | .049 | 10.631 | *** |       |
| e26 | .265     | .026 | 10.354 | *** |       |
| e27 | .186     | .019 | 9.608  | *** |       |
| e28 | .173     | .018 | 9.712  | *** |       |
| e29 | .211     | .021 | 9.923  | *** |       |
| e30 | .269     | .027 | 10.024 | *** |       |
| e31 | .267     | .027 | 10.016 | *** |       |

**Squared Multiple Correlations: (Group number 1 - Default model)** 

|      | Estimate |
|------|----------|
| OGC  | .921     |
| OGC1 | .634     |
| OGC2 | .633     |
| OGC3 | .662     |
| OGC4 | .696     |
| OGC5 | .710     |
| OGC6 | .560     |
| OGC7 | .453     |
| OI07 | .645     |
| OI06 | .601     |
| OI05 | .783     |
| OI04 | .445     |
| OI03 | .621     |
| OI02 | .601     |
| OI01 | .739     |
| POS3 | .634     |
| POS1 | .434     |
| EV4  | .549     |
| EV3  | .667     |
| EV2  | .461     |


|      | Estimate |
|------|----------|
| EV1  | .633     |
| POS6 | .656     |
| POS5 | .552     |
| EM03 | .373     |
| EM02 | .474     |
| EM04 | .350     |
| EM01 | .450     |
| IM04 | .570     |
| IM02 | .493     |
| IM01 | .476     |

#### **Bootstrap Distributions (Default model)**

#### ML discrepancy (implied vs sample) (Default model)

|                   | 1297.384 | *        |
|-------------------|----------|----------|
|                   | 1334.812 | **       |
|                   | 1372.240 | *****    |
|                   | 1409.668 | *****    |
|                   | 1447.096 | ****     |
|                   | 1484.524 | *****    |
|                   | 1521.952 | ******** |
| N = 200           | 1559.380 | *****    |
| Mean = $1553.002$ | 1596.808 | *******  |
| S. $e. = 7.885$   | 1634.236 | *******  |
|                   | 1671.664 | *****    |
|                   | 1709.092 | ****     |
|                   | 1746.520 | ****     |
|                   | 1783.948 | ***      |
|                   | 1821.376 | **       |
|                   |          |          |

#### ML discrepancy (implied vs pop) (Default model)



K-L overoptimism (unstabilized) (Default model)

|                  | -686.525 | *       |
|------------------|----------|---------|
|                  | -526.029 | ***     |
|                  | -365.532 | ****    |
|                  | -205.036 | ******  |
|                  | -44.539  | ******  |
|                  | 115.957  | ******* |
|                  | 276.454  | *****   |
| N = 200          | 436.950  | ******* |
| Mean = 285.366   | 597.447  | ******  |
| S. $e. = 29.089$ | 757.943  | *****   |
|                  | 918.440  | *****   |
|                  | 1078.936 | ***     |
|                  | 1239.433 | *       |
|                  | 1399.929 | *       |
|                  | 1560.426 | *       |
|                  |          |         |

# K-L overoptimism (stabilized) (Default model)

|                  | -14.120 | *       |
|------------------|---------|---------|
|                  | 40.328  | *       |
|                  | 94.776  | ****    |
|                  | 149.225 | ******  |
|                  | 203.673 | ******  |
|                  | 258.121 | ******* |
|                  | 312.569 | ******* |
| N = 200          | 367.018 | ******  |
| Mean = $301.173$ | 421.466 | ******  |
| S. $e. = 8.856$  | 475.914 | *****   |
|                  | 530.363 | *       |
|                  | 584.811 | **      |
|                  | 639.259 | *       |
|                  | 693.707 | *       |
|                  | 748.156 | *       |
|                  |         |         |

# APPENDIX 5 - FACTORS AFFECTING ORGANIZATIONAL COMMITMENT

# **Descriptives**

**Descriptive Statistics** 

|                    | N   | Minimum | Maximum | Mean | Std. Deviation |
|--------------------|-----|---------|---------|------|----------------|
| OGC1               | 249 | 1       | 5       | 3.74 | .856           |
| OGC2               | 249 | 1       | 5       | 3.68 | .857           |
| OGC3               | 249 | 1       | 5       | 3.90 | .792           |
| OGC4               | 249 | 1       | 5       | 3.96 | .756           |
| OGC5               | 249 | 1       | 5       | 3.85 | .804           |
| OGC6               | 249 | 1       | 5       | 3.82 | .778           |
| OGC7               | 249 | 1       | 5       | 3.41 | .976           |
| OI01               | 249 | 1       | 5       | 3.81 | .737           |
| OI02               | 249 | 1       | 5       | 3.84 | .812           |
| OI03               | 249 | 1       | 5       | 3.60 | .888           |
| OI04               | 249 | 1       | 5       | 3.62 | .922           |
| OI05               | 249 | 1       | 5       | 3.82 | .833           |
| OI06               | 249 | 1       | 5       | 3.71 | .905           |
| OI07               | 249 | 1       | 5       | 3.99 | .868           |
| EV1                | 249 | 1       | 5       | 4.00 | .833           |
| EV2                | 249 | 1       | 5       | 3.73 | .784           |
| EV3                | 249 | 1       | 5       | 3.96 | .805           |
| EV4                | 249 | 1       | 5       | 4.00 | .854           |
| POS1               | 249 | 1       | 5       | 3.79 | .770           |
| POS3               | 249 | 1       | 5       | 3.77 | .813           |
| POS5               | 249 | 1       | 5       | 3.45 | .879           |
| POS6               | 249 | 1       | 5       | 3.49 | .907           |
| IM01               | 249 | 1       | 5       | 3.96 | .750           |
| IM02               | 249 | 1       | 5       | 3.93 | .762           |
| IM04               | 249 | 1       | 5       | 3.82 | .797           |
| Valid N (listwise) | 249 |         |         |      |                |

#### RELIABILITY

/VARIABLES=0101 0102 0103 0104 0105 0106 0107

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE

/SUMMARY=TOTAL.

# Reliability

**Scale: ALL VARIABLES** 

**Case Processing Summary** 

| Case i rocessing duminary |                       |     |       |
|---------------------------|-----------------------|-----|-------|
|                           |                       | N   | %     |
| Cases                     | Valid                 | 249 | 100.0 |
|                           | Excluded <sup>a</sup> | 0   | .0    |
|                           | Total                 | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .921             | 7          |

**Item Statistics** 

|      | Mean | Std. Deviation | N   |  |
|------|------|----------------|-----|--|
| OI01 | 3.81 | .737           | 249 |  |
| OI02 | 3.84 | .812           | 249 |  |
| OI03 | 3.60 | .888           | 249 |  |
| OI04 | 3.62 | .922           | 249 |  |
| OI05 | 3.82 | .833           | 249 |  |
| OI06 | 3.71 | .905           | 249 |  |
| OI07 | 3.99 | .868           | 249 |  |

**Item-Total Statistics** 

|      | Scale Mean if Item | Scale Variance if | Corrected Item-   | Cronbach's Alpha |
|------|--------------------|-------------------|-------------------|------------------|
|      | Deleted            | Item Deleted      | Total Correlation | if Item Deleted  |
| OI01 | 22.58              | 18.639            | .791              | .906             |
| OI02 | 22.55              | 18.450            | .732              | .911             |
| OI03 | 22.79              | 17.700            | .766              | .907             |
| OI04 | 22.77              | 18.201            | .656              | .919             |
| OI05 | 22.57              | 17.626            | .842              | .899             |
| OI06 | 22.68              | 17.622            | .760              | .908             |

| Ol07 22.40 17.943 .750 | .909 |
|------------------------|------|
|------------------------|------|

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 26.39 | 24.215   | 4.921          | 7          |

RELIABILITY

/VARIABLES=EV1 EV2 EV3 EV4 POS1 POS3 /SCALE('ALL VARIABLES') ALL /MODEL=ALPHA.

# Reliability

Scale: ALL VARIABLES

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .887             | 6          |

RELIABILITY

/VARIABLES=EV1 EV2 EV3 EV4 POS1 POS3 /SCALE('ALL VARIABLES') ALL /MODEL=ALPHA /STATISTICS=DESCRIPTIVE SCALE /SUMMARY=TOTAL.

# Reliability

Scale: ALL VARIABLES

**Case Processing Summary** 

| -     |                       | N   | %     |
|-------|-----------------------|-----|-------|
| Cases | Valid                 | 249 | 100.0 |
|       | Excluded <sup>a</sup> | 0   | .0    |
|       | Total                 | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |  |
|------------------|------------|--|
| .887             | 6          |  |

**Item Statistics** 

| item diansites |      |                |     |
|----------------|------|----------------|-----|
| _              | Mean | Std. Deviation | N   |
| EV1            | 4.00 | .833           | 249 |
| EV2            | 3.73 | .784           | 249 |
| EV3            | 3.96 | .805           | 249 |
| EV4            | 4.00 | .854           | 249 |
| POS1           | 3.79 | .770           | 249 |
| POS3           | 3.77 | .813           | 249 |

#### **Item-Total Statistics**

|      | Scale Mean if Item | Scale Variance if | Corrected Item-   | Cronbach's Alpha |
|------|--------------------|-------------------|-------------------|------------------|
|      | Deleted            | Item Deleted      | Total Correlation | if Item Deleted  |
| EV1  | 19.25              | 10.446            | .733              | .862             |
| EV2  | 19.51              | 11.114            | .642              | .876             |
| EV3  | 19.29              | 10.289            | .804              | .850             |
| EV4  | 19.25              | 10.319            | .735              | .861             |
| POS1 | 19.46              | 11.467            | .579              | .885             |
| POS3 | 19.48              | 10.638            | .713              | .865             |

**Scale Statistics** 

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 23.25 | 15.083   | 3.884          | 6          |

#### RELIABILITY

/VARIABLES=EM02 EM03 POS5 POS6

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE

/SUMMARY=TOTAL.

### Reliability

### Scale: ALL VARIABLES

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .840             | 4          |

#### **Item Statistics**

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| EM02 | 3.57 | .918           | 249 |
| EM03 | 3.28 | .976           | 249 |
| POS5 | 3.45 | .879           | 249 |
| POS6 | 3.49 | .907           | 249 |

#### **Item-Total Statistics**

|      | Scale Mean if Item Deleted | Scale Variance if Item Deleted | Corrected Item-<br>Total Correlation | Cronbach's Alpha if Item Deleted |
|------|----------------------------|--------------------------------|--------------------------------------|----------------------------------|
| EM02 | 10.21                      | 5.241                          | .732                                 | .771                             |
| EM03 | 10.51                      | 5.122                          | .698                                 | .786                             |
| POS5 | 10.34                      | 5.750                          | .626                                 | .817                             |
| POS6 | 10.30                      | 5.598                          | .638                                 | .812                             |

#### **Scale Statistics**

| Mean | Variance | Std. Deviation | N of Items |
|------|----------|----------------|------------|

| ı |       |       |       |   |
|---|-------|-------|-------|---|
|   | 13.79 | 9.160 | 3.027 | 4 |

RELIABILITY

/VARIABLES=EM01 EM04 IM01 IM02 /SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE

/SUMMARY=TOTAL.

### Reliability

Scale: ALL VARIABLES

**Case Processing Summary** 

| Gass i recessing cannilary |           |     |       |
|----------------------------|-----------|-----|-------|
|                            |           | N   | %     |
| Cases                      | Valid     | 249 | 100.0 |
|                            | Excludeda | 0   | .0    |
|                            | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .776             | 4          |

#### **Item Statistics**

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| EM01 | 3.73 | .909           | 249 |
| EM04 | 3.71 | .911           | 249 |
| IM01 | 3.96 | .750           | 249 |
| IM02 | 3.93 | .762           | 249 |

#### Item-Total Statistics

|      | Scale Mean if Item | Scale Variance if | Corrected Item-   | Cronbach's Alpha |
|------|--------------------|-------------------|-------------------|------------------|
|      | Deleted            | Item Deleted      | Total Correlation | if Item Deleted  |
| EM01 | 11.60              | 3.774             | .594              | .716             |
| EM04 | 11.62              | 4.034             | .501              | .768             |
| IM01 | 11.37              | 4.202             | .628              | .702             |

| IM02 | 11.40 | 4.184 | .621 | .705 |
|------|-------|-------|------|------|

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 15.33 | 6.698    | 2.588          | 4          |

FACTOR

/VARIABLES OGC1 OGC2 OGC3 OGC4 OGC5 OGC6 OGC7 /MISSING LISTWISE /ANALYSIS OGC1 OGC2 OGC3 OGC4 OGC5 OGC6 OGC7 /PRINT INITIAL KMO EXTRACTION ROTATION /FORMAT SORT BLANK(.50) /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.

### **Factor Analysis**

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |                    | .887     |
|--------------------------------------------------|--------------------|----------|
| Bartlett's Test of Sphericity                    | Approx. Chi-Square | 1201.707 |
|                                                  | df                 | 21       |
|                                                  | Sig.               | .000     |

#### Communalities

|      | Initial | Extraction |
|------|---------|------------|
| OGC1 | 1.000   | .723       |
| OGC2 | 1.000   | .719       |
| OGC3 | 1.000   | .720       |
| OGC4 | 1.000   | .722       |
| OGC5 | 1.000   | .741       |
| OGC6 | 1.000   | .623       |
| OGC7 | 1.000   | .489       |

Extraction Method: Principal

Component Analysis.

#### **Total Variance Explained**

| _         |                     |                                     |
|-----------|---------------------|-------------------------------------|
| Component | Initial Eigenvalues | Extraction Sums of Squared Loadings |

|   | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % |
|---|-------|---------------|--------------|-------|---------------|--------------|
| 1 | 4.738 | 67.681        | 67.681       | 4.738 | 67.681        | 67.681       |
| 2 | .625  | 8.927         | 76.608       |       |               |              |
| 3 | .542  | 7.747         | 84.355       |       |               |              |
| 4 | .382  | 5.451         | 89.807       |       |               |              |
| 5 | .330  | 4.710         | 94.517       |       |               |              |
| 6 | .208  | 2.976         | 97.493       |       |               |              |
| 7 | .176  | 2.507         | 100.000      |       |               |              |

Component Matrix<sup>a</sup>

|      | Component |  |
|------|-----------|--|
|      | 1         |  |
| OGC5 | .861      |  |
| OGC1 | .850      |  |
| OGC4 | .850      |  |
| OGC3 | .848      |  |
| OGC2 | .848      |  |
| OGC6 | .790      |  |
| OGC7 | .699      |  |

Extraction Method: Principal

Component Analysis.

a. 1 components extracted.

# Rotated Component

#### Matrixa

a. Only one

component

was

extracted.

The solution

cannot be

rotated.

## **Factor Analysis**

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |                    | .934     |
|--------------------------------------------------|--------------------|----------|
| Bartlett's Test of Sphericity                    | Approx. Chi-Square | 3755.234 |
|                                                  | df                 | 231      |
|                                                  | Sig.               | .000     |

#### Communalities

| Communanties |         |            |  |  |
|--------------|---------|------------|--|--|
|              | Initial | Extraction |  |  |
| EV1          | 1.000   | .724       |  |  |
| EV2          | 1.000   | .571       |  |  |
| EV3          | 1.000   | .756       |  |  |
| EV4          | 1.000   | .710       |  |  |
| POS1         | 1.000   | .508       |  |  |
| POS3         | 1.000   | .685       |  |  |
| POS5         | 1.000   | .709       |  |  |
| POS6         | 1.000   | .618       |  |  |
| EM01         | 1.000   | .646       |  |  |
| EM02         | 1.000   | .762       |  |  |
| EM03         | 1.000   | .830       |  |  |
| EM04         | 1.000   | .555       |  |  |
| IM01         | 1.000   | .656       |  |  |
| IM02         | 1.000   | .651       |  |  |
| IM04         | 1.000   | .576       |  |  |
| OI01         | 1.000   | .748       |  |  |
| OI02         | 1.000   | .659       |  |  |
| OI03         | 1.000   | .723       |  |  |
| OI04         | 1.000   | .566       |  |  |
| OI05         | 1.000   | .808       |  |  |
| OI06         | 1.000   | .758       |  |  |
| OI07         | 1.000   | .675       |  |  |

Extraction Method: Principal

Component Analysis.

### **Total Variance Explained**

|           | Total Variance Explained |                            |                                   |  |  |  |  |
|-----------|--------------------------|----------------------------|-----------------------------------|--|--|--|--|
|           |                          | Extraction Sums of Squared |                                   |  |  |  |  |
| Component | Initial Eigenvalues      | Loadings                   | Rotation Sums of Squared Loadings |  |  |  |  |

|    |        | % of     |              |        | % of     | Cumul<br>ative |       |               |              |
|----|--------|----------|--------------|--------|----------|----------------|-------|---------------|--------------|
|    | Total  | Variance | Cumulative % | Total  | Variance | %              | Total | % of Variance | Cumulative % |
| 1  | 10.659 | 48.450   | 48.450       | 10.659 | 48.450   | 48.450         | 4.898 | 22.264        | 22.264       |
| 2  | 1.791  | 8.142    | 56.592       | 1.791  | 8.142    | 56.592         | 4.276 | 19.438        | 41.702       |
| 3  | 1.431  | 6.505    | 63.097       | 1.431  | 6.505    | 63.097         | 3.154 | 14.335        | 56.037       |
| 4  | 1.013  | 4.606    | 67.703       | 1.013  | 4.606    | 67.703         | 2.567 | 11.666        | 67.703       |
| 5  | .865   | 3.934    | 71.637       |        |          |                |       |               |              |
| 6  | .737   | 3.349    | 74.986       |        |          |                |       |               |              |
| 7  | .617   | 2.805    | 77.790       |        |          |                |       |               |              |
| 8  | .576   | 2.620    | 80.411       |        |          |                |       |               |              |
| 9  | .528   | 2.401    | 82.812       |        |          |                |       |               |              |
| 10 | .464   | 2.108    | 84.920       |        |          |                |       |               |              |
| 11 | .445   | 2.024    | 86.943       |        |          |                |       |               |              |
| 12 | .376   | 1.707    | 88.650       |        |          |                |       |               |              |
| 13 | .362   | 1.643    | 90.294       |        |          |                |       |               |              |
| 14 | .334   | 1.517    | 91.811       |        |          |                |       |               |              |
| 15 | .313   | 1.423    | 93.234       |        |          |                |       |               |              |
| 16 | .283   | 1.289    | 94.523       |        |          |                |       |               |              |
| 17 | .258   | 1.171    | 95.694       |        |          |                |       |               |              |
| 18 | .240   | 1.091    | 96.785       |        |          |                |       |               |              |
| 19 | .214   | .975     | 97.760       |        |          |                |       |               |              |
| 20 | .191   | .869     | 98.629       |        |          |                |       |               |              |
| 21 | .159   | .721     | 99.350       |        |          |                |       |               |              |
| 22 | .143   | .650     | 100.000      |        |          |                |       |               |              |

### Component Matrix<sup>a</sup>

|      | Component |   |   |   |  |  |
|------|-----------|---|---|---|--|--|
|      | 1         | 2 | 3 | 4 |  |  |
| OI05 | .806      |   |   |   |  |  |
| OI01 | .795      |   |   |   |  |  |
| OI07 | .779      |   |   |   |  |  |
| OI02 | .763      |   |   |   |  |  |
| OI06 | .760      |   |   |   |  |  |
| POS3 | .752      |   |   |   |  |  |
| IM04 | .733      |   |   |   |  |  |
| OI03 | .731      |   |   |   |  |  |
| EV3  | .714      |   |   |   |  |  |

| EV1  | .698 |      |  |
|------|------|------|--|
| IM02 | .690 |      |  |
| IM01 | .688 |      |  |
| POS6 | .680 |      |  |
| POS1 | .675 |      |  |
| EM01 | .674 |      |  |
| EV4  | .660 |      |  |
| EM02 | .651 | .509 |  |
| OI04 | .639 |      |  |
| POS5 | .630 |      |  |
| EV2  | .605 |      |  |
| EM04 | .582 |      |  |
| EM03 | .533 | .643 |  |

a. 4 components extracted.

Rotated Component Matrix<sup>a</sup>

|      | Component |      |      |      |  |  |
|------|-----------|------|------|------|--|--|
|      | 1         | 2    | 3    | 4    |  |  |
| OI05 | .810      |      |      |      |  |  |
| OI03 | .777      |      |      |      |  |  |
| OI01 | .751      |      |      |      |  |  |
| OI06 | .711      |      |      |      |  |  |
| OI04 | .700      |      |      |      |  |  |
| OI02 | .660      |      |      |      |  |  |
| OI07 | .658      |      |      |      |  |  |
| IM04 |           |      |      |      |  |  |
| EV3  |           | .803 |      |      |  |  |
| EV4  |           | .796 |      |      |  |  |
| EV1  |           | .739 |      |      |  |  |
| EV2  |           | .699 |      |      |  |  |
| POS3 |           | .642 |      |      |  |  |
| POS1 |           | .512 |      |      |  |  |
| EM03 |           |      | .850 |      |  |  |
| EM02 |           |      | .743 |      |  |  |
| POS5 |           |      | .681 |      |  |  |
| POS6 |           |      | .592 |      |  |  |
| EM04 |           |      |      | .642 |  |  |
| EM01 |           |      |      | .615 |  |  |

| IM02 |  | .609 |
|------|--|------|
| IM01 |  | .584 |

Rotation Method: Varimax with Kaiser Normalization.a

a. Rotation converged in 7 iterations.

**Component Transformation Matrix** 

| Component | 1    | 2    | 3    | 4    |  |  |
|-----------|------|------|------|------|--|--|
| 1         | .616 | .539 | .411 | .401 |  |  |
| 2         | .172 | 707  | .686 | 017  |  |  |
| 3         | 692  | .406 | .590 | 087  |  |  |
| 4         | 334  | 212  | 111  | .912 |  |  |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

#### FACTOR

/VARIABLES EV1 EV2 EV3 EV4 POS1 POS3 POS5 POS6 EM01 EM02 EM03 EM04 IM01 IM02 IM04 OI01 OI02 OI03

OIO4 OIO5 OIO6 OIO7 OGC1 OGC2 OGC3 OGC4 OGC5 OGC6 OGC7

/MISSING LISTWISE

/ANALYSIS EV1 EV2 EV3 EV4 POS1 POS3 POS5 POS6 EM01 EM02 EM03 EM04 IM01 IM02 IM04 OI01 OI02 OI03

OIO4 OIO5 OIO6 OIO7 OGC1 OGC2 OGC3 OGC4 OGC5 OGC6 OGC7

/PRINT INITIAL KMO EXTRACTION ROTATION

/FORMAT SORT BLANK(.50)

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PC

/CRITERIA ITERATE(25)

/ROTATION VARIMAX

/METHOD=CORRELATION

#### **Notes for Model (Default model)**

#### Computation of degrees of freedom (Default model)

Number of distinct sample moments: 406

Number of distinct parameters to be estimated: 72

Degrees of freedom (406 - 72): 334

#### Result (Default model)

Minimum was achieved

Chi-square = 946.513

Degrees of freedom = 334 Probability level = .000

| 1100dollity 10 ve | 1 .000         |        |         |
|-------------------|----------------|--------|---------|
|                   | Estim ate S.E. | C.R.   | P Label |
| 5 < 1             | .596 .076      | 7.869  | ***     |
| 5 < 2             | .002 .071      | .031   | .975    |
| 5 < 3             | .140 .082      | 1.709  | .087    |
| 5 < 4             | .287 .174      | 1.645  | .100    |
| OI05 < 1          | 1.000          |        |         |
| OI03 < 1          | .950 .059      | 16.142 | ***     |
| OI01 < 1          | .860 .045      | 19.062 | ***     |
| OI06 < 1          | .949 .061      | 15.575 | ***     |
| OI04 < 1          | .838 .067      | 12.429 | ***     |
| OI02 < 1          | .851 .055      | 15.560 | ***     |
| OI07 < 1          | .946 .057      | 16.682 | ***     |
| EV3 < 2           | 1.000          |        |         |
| EV4 < 2           | .981 .065      | 15.205 | ***     |
| EV1 < 2           | .964 .063      | 15.402 | ***     |
| EV2 < 2           | .789 .063      | 12.494 | ***     |
| POS3 < 2          | .871 .064      | 13.666 | ***     |
| POS1 < 2          | .660 .066      | 10.034 | ***     |
| EM03 < 3          | 1.000          |        |         |
| EM02 < 3          | 1.081 .081     | 13.386 | ***     |
| POS5 < 3          | 1.002 .124     | 8.053  | ***     |
| POS6 < 3          | 1.149 .132     | 8.677  | ***     |
| EM04 < 4          | 1.000          |        |         |
| EM01 < 4          | 1.147 .137     | 8.399  | ***     |
| IM02 < 4          | .983 .116      | 8.504  | ***     |
| IM01 < 4          | .957 .113      | 8.434  | ***     |
| OGC5 < 5          | 1.000          |        |         |
| OGC1 < 5          | 1.001 .067     | 14.975 | ***     |
| OGC4 < 5          | .953 .057      | 16.830 | ***     |
| OGC3 < 5          | .957 .061      | 15.740 | ***     |
| OGC2 < 5          | 1.005 .067     | 15.017 | ***     |
| OGC6 < 5          | .870 .062      | 13.995 | ***     |
| OGC7 < 5          | 1.010 .081     | 12.460 | ***     |
| E                 | stimate        |        |         |
| 5 < 1             | .653           |        |         |
| 5 < 1             | .653           |        |         |

```
Estimate
5
      <--- 2
                .002
5
      <--- 3
                .127
5
      <--- 4
                .230
OI05 <--- 1
                .884
OI03 <--- 1
                .788
OI01 <--- 1
                .860
OI06 <--- 1
                .772
OI04 <--- 1
                .670
OI02 <--- 1
                .772
OI07 <--- 1
                .803
EV3 <--- 2
                .863
EV4 <--- 2
                .798
EV1 <--- 2
                .804
EV2 <--- 2
                .699
POS3 <--- 2
                .744
POS1 <--- 2
                .595
EM03 <--- 3
                .625
EM02 <--- 3
                .718
POS5 <--- 3
                .695
POS6 <--- 3
                .772
EM04 <--- 4
                .593
EM01 <--- 4
                .681
IM02 <--- 4
                .697
IM01 <--- 4
                .689
OGC5 <--- 5
                .837
OGC1 <--- 5
                .787
OGC4 <--- 5
                .849
OGC3 <--- 5
                .812
OGC2 <--- 5
                .789
OGC6 <--- 5
                .752
OGC7 <--- 5
                .696
            Estimate S.E. C.R.
                                  P Label
1 <--> 2
                .357 .045 7.939 ***
                .333 .050 6.691 ***
1 <--> 3
1 <--> 4
                .332 .047 7.007 ***
2 <--> 3
                .277 .045 6.217 ***
```

.305 .045 6.845 \*\*\*

2 <--> 4

```
Estimate S.E. C.R.
                                  P Label
3 <--> 4
                .258 .045 5.791 ***
                .130 .026 4.965 ***
e20 < --> e21
e12 < --> e13
                .110 .025 4.375 ***
e14 < --> e15
                .282 .046 6.109 ***
e16 < --> e17
               .060 .038 1.566 .117
               -.104 .020 -5.098 ***
e24 < --> e28
e23 <--> e26
                .114 .021 5.396 ***
            Estimate
1 <--> 2
                .700
1 <--> 3
                .743
1 <--> 4
                .837
2 <--> 3
                .658
2 <--> 4
                .816
3 <--> 4
                .788
e20 < --> e21
                .439
e12 <--> e13
                .328
e14 <--> e15
                .581
e16 <--> e17
                .166
e24 < --> e28
               -.374
e23 < --> e26
                .413
     Estimate S.E. C.R.
                           P Label
1
         .541 .061 8.803 ***
2
         .481 .058 8.302 ***
         .370 .075 4.932 ***
3
4
         .290 .060 4.814 ***
         .036 .009 3.898 ***
e29
e1
         .151 .017 8.956 ***
         .298 .029 10.150 ***
e2
e3
         .141 .015 9.418 ***
         .329 .032 10.249 ***
e4
e5
         .467 .044 10.650 ***
         .266 .026 10.251 ***
e6
         .267 .027 10.046 ***
e7
         .164 .021 7.868 ***
e8
e9
         .264 .029 9.190 ***
         .244 .027 9.097 ***
e10
```

.313 .031 10.087 \*\*\*

e11

```
Estimate S.E. C.R. P Label
e12
         .294 .030 9.744 ***
e13
         .382 .036 10.482 ***
e14
         .579 .061 9.416 ***
         .406 .048 8.466 ***
e15
         .398 .049 8.076 ***
e16
e17
         .332 .048 6.852 ***
e18
         .535 .053 10.185 ***
         .441 .046 9.507 ***
e19
e20
         .297 .032 9.173 ***
e21
         .295 .032 9.259 ***
e22
         .193 .020 9.821 ***
e23
         .277 .027 10.193 ***
e24
         .159 .017 9.429 ***
e25
         .212 .021 10.049 ***
e26
         .277 .027 10.185 ***
         .262 .025 10.412 ***
e27
e28
         .489 .047 10.462 ***
       Estimate
5
           .920
OGC7
           .484
OGC6
           .566
OGC2
           .622
OGC3
           .660
OGC4
           .720
OGC1
           .620
OGC5
           .701
IM01
           .474
IM02
           .486
EM01
           .464
EM04
           .352
POS6
           .596
POS5
           .483
EM02
           .516
EM03
           .390
POS1
           .354
POS3
           .554
EV2
           .488
```

```
Estimate
EV1
            .647
EV4
            .636
EV3
            .746
OI07
            .644
OI02
            .596
OI04
            .448
OI06
            .596
OI01
            .739
OI03
            .621
OI05
            .782
    O O O O O O I I E E P P E E P P E E E O O O O O O
    G G G G G M M M M O O M M O O V V V V 10 10 10 10 10 10
    C7 C6 C2 C3 C4 C1 C5 01 02 01 04 S6 S5 02 03 S1 S3 2 1 4 3 7 2 4 6 1 3 5
O
    .0
G
C7 00
O - .0
G .0 00
C6 06
O - - .0 .0
G .0 .0 .0 46 00
C3 43 31
O .0 .0 .0 .0 .0 .0 .0 C4 00 29 15 31 00
O .0 - .0 .0 - .0
G 19 .0 00 09 .0 00
C1 19 16
O - .0 - .0 .0 .0 .0 .0 .0 C5 43 19 24 00 14 32 00
IM .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0 1 .0 0 17 03 30 38 02 33 00
```

```
G G G G G G M M M M O O M M O O V V V V 10 10 10 10 10 10 10
 C7 C6 C2 C3 C4 C1 C5 01 02 01 04 S6 S5 02 03 S1 S3 2 1 4 3 7 2 4 6 1 3 5
Ε
  P
 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 55 76 43 70 68 25 03 78 37 93 08 50 00 00
  .0 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0
  72 49 61 42 79 67 61 00 57 30 59 12 51 67 72 00
 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 35 .0 .0 .0 .0 1 44 03 59 17 05 87 30 28 30 24 45 20 54 92 25 03 1
```

O O O O O O I I E E P P E E P P E E E E O O O O O O

```
O O O O O O I I E E P P E E P P E E E O O O O O O
 G G G G G G M M M M O O M M O O V V V V 10 10 10 10 10 10 10
 C7 C6 C2 C3 C4 C1 C5 01 02 01 04 S6 S5 02 03 S1 S3 2 1 4 3 7 2 4 6 1 3 5
O
 .0
G
 00
O
G .1 .0
C6 17 00
O - - .0
G .2 .3 .0
C2 09 51
```

```
O - - .8 .0
G .7 .6 92 00
C3 59 75
O .3 - .0 .1 - .0
G .3 .3 .0 .1 .8 .0
C1 16 35 00 81 .8 00
O - .3 - - .2 .6 .0
G .7 98 .4 .0 96 06 00
C5 53 63 05
P .3 .5 .9 .4 .2 .0 1. .8 .7 .2 .4 .0 .0 S5 24 92 42 88 44 48 8 28 74 21 44 00 00
```

```
11 57
      1
              6
                      3 0
OI .2 .0 - - .2 .3 1. .8 .9 1. .1 .1 1. .9 - 1. 1. .0 .7 - .4 .0 07 40 95 24 66 00 34 4 96 59 8 49 83 23 56 36 8 3 2 20 68 79 0
OI 1. .3 .8 - .5 - .4 .3 1. - 1. - - .6 .2 2. .9 .3 .7 .0 .1 .4 .0 02 22 72 01 66 70 73 47 97 1 86 6 52 25 16 11 1 85 9 02 60 48 4 0
OI .9 \stackrel{-1}{\cancel{0}} .1 1. \stackrel{-1}{\cancel{0}} .5 .3 \stackrel{-1}{\cancel{0}} 1. .0 \stackrel{-1}{\cancel{0}} .8 1. 1. 1. 2. 1. .0 \stackrel{-1}{\cancel{0}} .3 .5 \stackrel{-1}{\cancel{0}} .7 .0 06 99 \stackrel{-1}{\cancel{0}} 74 52 60 34 10 57 \stackrel{-1}{\cancel{0}} 50 52 08 32 9 4 6 9 2 9 \stackrel{-1}{\cancel{0}} 71 61 2 9 0 0
```

OI .4 .7 .2 .1 .2 .78 .1 99 93 18 51  $\overset{-}{0}$  72 69 99 5 0 9 85 22 49 0 1 7 7 1 0 0

#### M.I. Par Change

|     |    |     |        | C    |   |
|-----|----|-----|--------|------|---|
| e12 | <> | 3   | 18.087 | .074 |   |
| e6  | <> | e28 | 15.560 | 093  |   |
| e4  | <> | 3   | 16.475 | .079 | , |
| e4  | <> | e25 | 17.882 | 077  |   |
| e4  | <> | e16 | 18.670 | .107 |   |
| e4  | <> | e10 | 22.367 | 097  |   |

#### M.I. Par Change

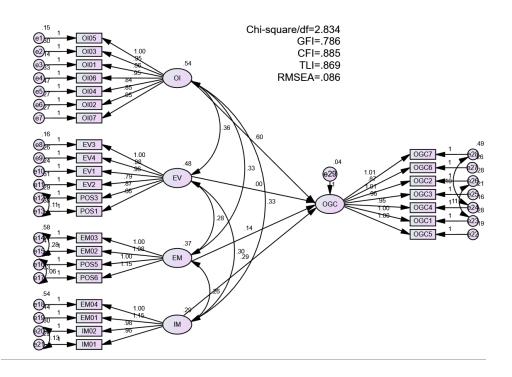
#### M.I. Par Change

EM01 <--- EM03 15.837 .182 OI06 <--- POS5 15.999 .173

| Iteration | Negative eigenvalues | Condition # | Smallest eigenvalue | Diameter | F        | NTries | Ratio    |
|-----------|----------------------|-------------|---------------------|----------|----------|--------|----------|
| 0 e       | 20                   |             | -1.319              | 9999.000 | 5482.550 | 0      | 9999.000 |
| 1 e       | 23                   |             | 503                 | 3.701    | 3231.159 | 19     | .286     |
| 2 e*      | 7                    |             | 266                 | 1.282    | 2004.189 | 5      | .919     |
| 3 e*      | 3                    |             | -2.364              | .957     | 1598.018 | 5      | .578     |
| 4 e       | 1                    |             | 480                 | .586     | 1283.931 | 5      | .655     |
| 5 e       | 0                    | 839.767     |                     | .466     | 1075.516 | 4      | .961     |
| 6 e       | 0                    | 820.068     |                     | .806     | 978.787  | 2      | .000     |
| 7 e       | 0                    | 809.244     |                     | .797     | 957.342  | 1      | .750     |
| 8 e       | 0                    | 1322.584    |                     | .661     | 955.986  | 1      | .124     |
| 9 e       | 0                    | 2284.330    |                     | .178     | 950.363  | 3      | .000     |
| 10 e      | 0                    | 644.669     |                     | .558     | 950.262  | 1      | .027     |

| Iteration Neg    | gative Cond        | ition # Sma                | nllest<br>Value Diameter | FN      | Tries | Ratio |
|------------------|--------------------|----------------------------|--------------------------|---------|-------|-------|
| 11 e             |                    | 68.419                     |                          | 946.969 | 1     | .937  |
| 12 e             | 0 37               | 73.816                     | .126                     | 946.526 | 1     | .920  |
| 13 e             | 0 39               | 98.086                     | .006                     | 946.513 | 1     | 1.011 |
| 14 e             | 0 39               | 98.822                     | .001                     | 946.513 | 1     | 1.001 |
| Model            | NPAR               | CMIN DF                    | P CMIN/DF                |         |       |       |
| Default model    | 72                 | 946.513 334 .              | .000 2.834               |         |       |       |
| Saturated model  | 406                | .000 0                     |                          |         |       |       |
| Independence mod | lel 28 5           | 684.715 378 .              | .000 15.039              |         |       |       |
| Model            | RMR C              | GFI AGFI PG                | FI                       |         |       |       |
| Default model    | .044 .7            | 786 .740 .6                | 47                       |         |       |       |
| Saturated model  | .000 1.0           | 000                        |                          |         |       |       |
| Independence mod | lel .335 .1        | 132 .068 .1                | 23                       |         |       |       |
| Model            | NFI I<br>Delta1 rl | RFI IFI T<br>ho1 Delta2 rh | CHI                      |         |       |       |
| Default model    | .833 .8            | 812 .886 .8                | 69 .885                  |         |       |       |
| Saturated model  | 1.000              | 1.000                      | 1.000                    |         |       |       |
| Independence mod | lel .000 .0        | 0. 000. 000                | 000.000                  |         |       |       |
| Model            | PRATIO             | PNFI PCFI                  |                          |         |       |       |
| Default model    | .884               | 1 .736 .782                |                          |         |       |       |
| Saturated model  | .000               | 000. 000.                  |                          |         |       |       |
| Independence mod | lel 1.000          | 000. 000.                  |                          |         |       |       |
| Model            | NCI                | P LO 90                    | HI 90                    |         |       |       |
| Default model    | 612.513            | 3 524.446 7                | 708.212                  |         |       |       |
| Saturated model  | .000               | .000                       | .000                     |         |       |       |
| Independence mod | lel 5306.715       | 5 5066.063 55              | 553.792                  |         |       |       |
| Model            | <b>FMIN</b>        | F0 LO 90                   | HI 90                    |         |       |       |
| Default model    | 3.817              | 2.470 2.115                | 2.856                    |         |       |       |
| Saturated model  | .000               | .000 .000                  | .000                     |         |       |       |
| Independence mod | lel 22.922 2       | 1.398 20.428               | 22.394                   |         |       |       |
| Model            | RMSEA              | LO 90 HI 90                | PCLOSE                   |         |       |       |
| Default model    | .086               | .080 .092                  | .000                     |         |       |       |
| Independence mod | lel .238           | .232 .243                  | .000                     |         |       |       |
| Model            | AIC                | C BCC                      | BIC CA                   | IC      |       |       |
| Default model    | 1090.513           | 3 1109.581 13              | 343.770 1415.7           | 70      |       |       |
| Saturated model  | 812.000            | 0 919.525 22               | 240.086 2646.08          | 86      |       |       |
| Independence mod | lel 5740.715       | 5 5748.130 58              | 339.203 5867.20          | 03      |       |       |

 Model
 ECVI LO 90
 HI 90 MECVI


 Default model
 4.397
 4.042
 4.783
 4.474

 Saturated model
 3.274
 3.274
 3.274
 3.708

 Independence model
 23.148
 22.178
 24.144
 23.178

| Model              | HOELTER HO | ELTER |
|--------------------|------------|-------|
| Model              | .05        | .01   |
| Default model      | 99         | 105   |
| Independence model | 19         | 20    |

Minimization: .092 Miscellaneous: 2.403 Bootstrap: .000 Total: 2.495



## **Descriptives**

**Descriptive Statistics** 

|                    | N   | Minimum | Maximum | Mean | Std. Deviation |
|--------------------|-----|---------|---------|------|----------------|
| IC01               | 249 | 1       | 5       | 3.81 | .843           |
| IC02               | 249 | 1       | 5       | 3.77 | .834           |
| IC03               | 249 | 1       | 5       | 3.82 | .849           |
| IC04               | 249 | 1       | 5       | 3.76 | .840           |
| LDS1               | 249 | 1       | 5       | 3.92 | .824           |
| LDS2               | 249 | 1       | 5       | 3.88 | .882           |
| LDS3               | 249 | 1       | 5       | 3.87 | .899           |
| LDS4               | 249 | 1       | 5       | 3.90 | .821           |
| LDS5               | 249 | 1       | 5       | 4.03 | .815           |
| LDS6               | 249 | 1       | 5       | 4.16 | .770           |
| LDS7               | 249 | 1       | 5       | 3.86 | .828           |
| LDS8               | 249 | 1       | 5       | 4.04 | .756           |
| LDS9               | 249 | 1       | 5       | 3.83 | .840           |
| LDS10              | 249 | 1       | 5       | 3.55 | .954           |
| IM01               | 249 | 1       | 5       | 3.96 | .750           |
| IM02               | 249 | 1       | 5       | 3.93 | .762           |
| IM03               | 249 | 1       | 5       | 3.87 | .769           |
| IM04               | 249 | 1       | 5       | 3.82 | .797           |
| EM01               | 249 | 1       | 5       | 3.73 | .909           |
| EM02               | 249 | 1       | 5       | 3.57 | .918           |
| EM03               | 249 | 1       | 5       | 3.28 | .976           |
| EM04               | 249 | 1       | 5       | 3.71 | .911           |
| OGC1               | 249 | 1       | 5       | 3.74 | .856           |
| OGC2               | 249 | 1       | 5       | 3.68 | .857           |
| OGC3               | 249 | 1       | 5       | 3.90 | .792           |
| OGC4               | 249 | 1       | 5       | 3.96 | .756           |
| OGC5               | 249 | 1       | 5       | 3.85 | .804           |
| OGC6               | 249 | 1       | 5       | 3.82 | .778           |
| OGC7               | 249 | 1       | 5       | 3.41 | .976           |
| Valid N (listwise) | 249 |         |         |      |                |

### Reliability

[DataSet1] E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN CỚU SINH\PHASE 2-SWINBURNE\KÉT QUẢ KHẢO SÁT\NHAP DU LIEU THO\FINAL TONG HOP DU LIEU\SPSS\DATA FULL-3BIÉNCHÍNH-MET-JOB-OGC\FINAL-DATA SPSS.sav

#### Warnings

The determinant of the covariance matrix is zero or approximately zero. Statistics based on its inverse matrix cannot be computed and they are displayed as system missing values.

### Scale: ALL VARIABLES

**Case Processing Summary** 

|       |                       | July Carring |       |
|-------|-----------------------|--------------|-------|
|       |                       | N            | %     |
| Cases | Valid                 | 249          | 100.0 |
|       | Excluded <sup>a</sup> | 0            | .0    |
|       | Total                 | 249          | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

|                  | mashing oranomeo   |            |
|------------------|--------------------|------------|
|                  | Cronbach's Alpha   |            |
|                  | Based on           |            |
| Cronbach's Alpha | Standardized Items | N of Items |
| .958             | .959               | 28         |

**Item Statistics** 

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| LDS1 | 3.92 | .824           | 249 |
| LDS2 | 3.88 | .882           | 249 |
| LDS3 | 3.87 | .899           | 249 |
| LDS4 | 3.90 | .821           | 249 |
| LDS5 | 4.03 | .815           | 249 |
| LDS6 | 4.16 | .770           | 249 |
| LDS7 | 3.86 | .828           | 249 |
| LDS8 | 4.04 | .756           | 249 |
| LDS9 | 3.83 | .840           | 249 |
| IC01 | 3.81 | .843           | 249 |
| IC02 | 3.77 | .834           | 249 |
| IC03 | 3.82 | .849           | 249 |
| IC04 | 3.76 | .840           | 249 |
| OGC1 | 3.74 | .856           | 249 |
| OGC2 | 3.68 | .857           | 249 |
| OGC3 | 3.90 | .792           | 249 |
| OGC4 | 3.96 | .756           | 249 |
| OGC5 | 3.85 | .804           | 249 |
| OGC6 | 3.82 | .778           | 249 |
| OGC7 | 3.41 | .976           | 249 |

|      |      | i i  |     |
|------|------|------|-----|
| IM01 | 3.96 | .750 | 249 |
| IM02 | 3.93 | .762 | 249 |
| IM03 | 3.87 | .769 | 249 |
| IM04 | 3.82 | .797 | 249 |
| EM01 | 3.73 | .909 | 249 |
| EM02 | 3.57 | .918 | 249 |
| EM03 | 3.28 | .976 | 249 |
| EM04 | 3.71 | .911 | 249 |

**Summary Item Statistics** 

|            | Mean  | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |
|------------|-------|---------|---------|-------|----------------------|----------|------------|
| Item Means | 3.817 | 3.281   | 4.157   | .876  | 1.267                | .032     | 28         |

**Item-Total Statistics** 

|      | Scale Mean if Item | Scale Variance if | Corrected Item-   | Squared Multiple | Cronbach's Alpha if |
|------|--------------------|-------------------|-------------------|------------------|---------------------|
|      | Deleted            | Item Deleted      | Total Correlation | Correlation      | Item Deleted        |
| LDS1 | 102.95             | 240.074           | .697              |                  | .956                |
| LDS2 | 102.99             | 241.339           | .600              |                  | .957                |
| LDS3 | 103.00             | 238.871           | .679              |                  | .956                |
| LDS4 | 102.97             | 239.302           | .731              |                  | .956                |
| LDS5 | 102.84             | 240.676           | .681              |                  | .956                |
| LDS6 | 102.71             | 240.924           | .713              |                  | .956                |
| LDS7 | 103.01             | 241.274           | .645              |                  | .957                |
| LDS8 | 102.83             | 241.885           | .685              |                  | .956                |
| LDS9 | 103.04             | 241.938           | .609              |                  | .957                |
| IC01 | 103.06             | 239.352           | .709              |                  | .956                |
| IC02 | 103.10             | 241.421           | .634              |                  | .957                |
| IC03 | 103.05             | 238.812           | .725              |                  | .956                |
| IC04 | 103.10             | 240.360           | .672              |                  | .956                |
| OGC1 | 103.12             | 239.585           | .689              |                  | .956                |
| OGC2 | 103.19             | 238.557           | .727              |                  | .956                |
| OGC3 | 102.96             | 239.979           | .731              |                  | .956                |
| OGC4 | 102.91             | 240.245           | .757              |                  | .956                |
| OGC5 | 103.02             | 239.842           | .726              |                  | .956                |
| OGC6 | 103.04             | 241.188           | .694              |                  | .956                |
| OGC7 | 103.46             | 239.346           | .605              |                  | .957                |
| IM01 | 102.91             | 242.721           | .653              |                  | .957                |
| IM02 | 102.94             | 242.722           | .643              |                  | .957                |
| IM03 | 103.00             | 242.710           | .637              |                  | .957                |
| IM04 | 103.05             | 240.800           | .692              |                  | .956                |

| EM01 | 103.14 | 240.094 | .626 | .957 |
|------|--------|---------|------|------|
| EM02 | 103.29 | 241.990 | .551 | .958 |
| EM03 | 103.59 | 244.187 | .440 | .959 |
| EM04 | 103.16 | 242.022 | .554 | .958 |

#### **Scale Statistics**

| Mean   | Variance | Std. Deviation | N of Items |
|--------|----------|----------------|------------|
| 106.87 | 258.559  | 16.080         | 28         |

## Factor Analysis

**Correlation Matrix** 

| _             |      |       |       | , -           | ,     |      |      |      |      | 00   | auoni | · · · · · · · · · · · · · · · · · · · |      |      |      | _    |      |      |      |      | _    | _    | $\overline{}$ |
|---------------|------|-------|-------|---------------|-------|------|------|------|------|------|-------|---------------------------------------|------|------|------|------|------|------|------|------|------|------|---------------|
|               |      |       |       | IC            |       | LDS  | LDS  | LDS  | LDS  | LDS  | LDS   | LDS                                   | LDS  | LDS  | LDS  | IMO  | IMO  | IMO  | IMO  | EM   | EM   | EM   | EM            |
|               |      | IC01  | IC02  | 03            | IC04  | 1    | 2    | 3    | 4    | 5    | 6     | 7                                     | 8    | 9    | 10   | 1    | 2    | 3    | 4    | 01   | 02   | 03   | 04            |
| Corr<br>elati | IC01 | 1.000 | .689  | .6<br>62      | .557  | .675 | .467 | .515 | .548 | .507 | .500  | .470                                  | .550 | .519 | .305 | .543 | .526 | .453 | .488 | .423 | .292 | .222 | .369          |
| on            | IC02 | .689  | 1.000 | .6<br>86      | .629  | .571 | .470 | .512 | .547 | .532 | .503  | .560                                  | .437 | .445 | .359 | .391 | .419 | .367 | .360 | .358 | .307 | .195 | .303          |
|               | IC03 | .662  | .686  | 1.<br>00<br>0 | .793  | .538 | .454 | .539 | .684 | .549 | .549  | .468                                  | .514 | .409 | .183 | .463 | .430 | .439 | .439 | .360 | .330 | .276 | .432          |
|               | IC04 | .557  | .629  | .7<br>93      | 1.000 | .485 | .422 | .535 | .613 | .522 | .557  | .503                                  | .441 | .360 | .168 | .337 | .359 | .382 | .428 | .339 | .355 | .308 | .336          |
|               | LDS1 | .675  | .571  | .5<br>38      | .485  | 1.00 | .613 | .693 | .560 | .616 | .560  | .580                                  | .569 | .592 | .323 | .458 | .435 | .378 | .383 | .396 | .291 | .159 | .323          |
|               | LDS2 | .467  | .470  | .4<br>54      | .422  | .613 | 1.00 | .624 | .561 | .526 | .587  | .456                                  | .503 | .499 | .288 | .419 | .371 | .356 | .386 | .365 | .193 | .158 | .316          |
|               | LDS3 | .515  | .512  | .5<br>39      | .535  | .693 | .624 | 1.00 | .603 | .605 | .607  | .614                                  | .530 | .515 | .339 | .375 | .363 | .412 | .449 | .405 | .312 | .203 | .297          |
|               | LDS4 | .548  | .547  | .6<br>84      | .613  | .560 | .561 | .603 | 1.00 | .691 | .658  | .577                                  | .592 | .465 | .197 | .471 | .440 | .438 | .482 | .367 | .256 | .233 | .385          |
|               | LDS5 | .507  | .532  | .5<br>49      | .522  | .616 | .526 | .605 | .691 | 1.00 | .751  | .645                                  | .568 | .578 | .203 | .503 | .412 | .353 | .380 | .342 | .205 | .127 | .337          |
|               | LDS6 | .500  | .503  | .5<br>49      | .557  | .560 | .587 | .607 | .658 | .751 | 1.00  | .585                                  | .641 | .509 | .179 | .465 | .424 | .430 | .475 | .435 | .295 | .199 | .405          |
|               | LDS7 | .470  | .560  | .4<br>68      | .503  | .580 | .456 | .614 | .577 | .645 | .585  | 1.00                                  | .621 | .586 | .338 | .406 | .298 | .408 | .358 | .394 | .266 | .189 | .319          |
|               | LDS8 | .550  | .437  | .5<br>14      | .441  | .569 | .503 | .530 | .592 | .568 | .641  | .621                                  | 1.00 | .519 | .350 | .522 | .397 | .474 | .501 | .521 | .263 | .225 | .375          |
|               | LDS9 | .519  | .445  | .4<br>09      | .360  | .592 | .499 | .515 | .465 | .578 | .509  | .586                                  | .519 | 1.00 | .433 | .437 | .366 | .290 | .321 | .447 | .288 | .186 | .352          |

| LDS1 | .305 | .359 | .1<br>83 | .168 | .323 | .288 | .339 | .197 | .203 | .179 | .338 | .350 | .433 | 1.00 | .200 | .207 | .281 | .209 | .213 | .255 | .236 | .052 |
|------|------|------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| IM01 | .543 | .391 | .4<br>63 | .337 | .458 | .419 | .375 | .471 | .503 | .465 | .406 | .522 | .437 | .200 | 1.00 | .708 | .543 | .507 | .451 | .344 | .197 | .372 |
| IM02 | .526 | .419 | .4<br>30 | .359 | .435 | .371 | .363 | .440 | .412 | .424 | .298 | .397 | .366 | .207 | .708 | 1.00 | .556 | .551 | .463 | .397 | .237 | .349 |
| IM03 | .453 | .367 | .4<br>39 | .382 | .378 | .356 | .412 | .438 | .353 | .430 | .408 | .474 | .290 | .281 | .543 | .556 | 1.00 | .776 | .353 | .388 | .313 | .353 |
| IM04 | .488 | .360 | .4<br>39 | .428 | .383 | .386 | .449 | .482 | .380 | .475 | .358 | .501 | .321 | .209 | .507 | .551 | .776 | 1.00 | .493 | .454 | .399 | .447 |
| EM01 | .423 | .358 | .3<br>60 | .339 | .396 | .365 | .405 | .367 | .342 | .435 | .394 | .521 | .447 | .213 | .451 | .463 | .353 | .493 | 1.00 | .539 | .490 | .508 |
| EM02 | .292 | .307 | .3<br>30 | .355 | .291 | .193 | .312 | .256 | .205 | .295 | .266 | .263 | .288 | .255 | .344 | .397 | .388 | .454 | .539 | 1.00 | .764 | .405 |
| EM03 | .222 | .195 | .2<br>76 | .308 | .159 | .158 | .203 | .233 | .127 | .199 | .189 | .225 | .186 | .236 | .197 | .237 | .313 | .399 | .490 | .764 | 1.00 | .397 |
| EM04 | .369 | .303 | .4<br>32 | .336 | .323 | .316 | .297 | .385 | .337 | .405 | .319 | .375 | .352 | .052 | .372 | .349 | .353 | .447 | .508 | .405 | .397 | 1.00 |

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure o  | of Sampling Adequacy. | .909     |
|-------------------------------|-----------------------|----------|
| Bartlett's Test of Sphericity | Approx. Chi-Square    | 3790.690 |
|                               | Df                    | 231      |
|                               | Sig.                  | .000     |

#### Communalities

|      | Initial | Extraction |
|------|---------|------------|
| IC01 | 1.000   | .694       |
| IC02 | 1.000   | .751       |
| IC03 | 1.000   | .844       |
| IC04 | 1.000   | .815       |
| LDS1 | 1.000   | .679       |
| LDS2 | 1.000   | .558       |
| LDS3 | 1.000   | .650       |
| LDS4 | 1.000   | .708       |
| LDS5 | 1.000   | .741       |
| LDS6 | 1.000   | .736       |
| LDS7 | 1.000   | .651       |
| LDS8 | 1.000   | .643       |
| LDS9 | 1.000   | .675       |

| <b>-</b> |       | 1    |
|----------|-------|------|
| LDS10    | 1.000 | .824 |
| IM01     | 1.000 | .717 |
| IM02     | 1.000 | .723 |
| IM03     | 1.000 | .708 |
| IM04     | 1.000 | .713 |
| EM01     | 1.000 | .664 |
| EM02     | 1.000 | .803 |
| EM03     | 1.000 | .837 |
| EM04     | 1.000 | .595 |

Extraction Method: Principal

Component Analysis.

Total Variance Explained

|           | Initial Eigenvalues |               | Extracti     | Extraction Sums of Squared Loadings |               |              | Rotation Sums of Squared Loadings |               |              |
|-----------|---------------------|---------------|--------------|-------------------------------------|---------------|--------------|-----------------------------------|---------------|--------------|
| Component | Total               | % of Variance | Cumulative % | Total                               | % of Variance | Cumulative % | Total                             | % of Variance | Cumulative % |
| 1         | 10.250              | 46.589        | 46.589       | 10.250                              | 46.589        | 46.589       | 5.500                             | 25.001        | 25.001       |
| 2         | 2.029               | 9.223         | 55.812       | 2.029                               | 9.223         | 55.812       | 3.257                             | 14.802        | 39.804       |
| 3         | 1.250               | 5.684         | 61.496       | 1.250                               | 5.684         | 61.496       | 3.075                             | 13.977        | 53.780       |
| 4         | 1.189               | 5.406         | 66.902       | 1.189                               | 5.406         | 66.902       | 2.626                             | 11.938        | 65.718       |
| 5         | 1.012               | 4.601         | 71.503       | 1.012                               | 4.601         | 71.503       | 1.273                             | 5.785         | 71.503       |
| 6         | .823                | 3.742         | 75.245       |                                     |               |              |                                   |               |              |
| 7         | .649                | 2.949         | 78.194       |                                     |               |              |                                   |               |              |
| 8         | .618                | 2.808         | 81.002       |                                     |               |              |                                   |               |              |
| 9         | .508                | 2.310         | 83.311       |                                     |               |              |                                   |               |              |
| 10        | .492                | 2.236         | 85.547       |                                     |               |              |                                   |               |              |
| 11        | .409                | 1.858         | 87.405       |                                     |               |              |                                   |               |              |
| 12        | .381                | 1.733         | 89.138       |                                     |               |              |                                   |               |              |
| 13        | .372                | 1.692         | 90.830       |                                     |               |              |                                   |               |              |
| 14        | .345                | 1.567         | 92.398       |                                     |               |              |                                   |               |              |
| 15        | .323                | 1.468         | 93.865       |                                     |               |              |                                   |               |              |
| 16        | .257                | 1.167         | 95.032       |                                     |               |              |                                   |               |              |
| 17        | .228                | 1.036         | 96.068       |                                     |               |              |                                   |               |              |
| 18        | .220                | .999          | 97.068       |                                     |               |              |                                   |               |              |
| 19        | .193                | .877          | 97.944       |                                     |               |              |                                   |               |              |
| 20        | .183                | .833          | 98.778       |                                     |               |              |                                   |               |              |
| 21        | .142                | .646          | 99.423       |                                     |               |              |                                   |               |              |
| 22        | .127                | .577          | 100.000      |                                     |               |              |                                   |               |              |

Extraction Method: Principal Component Analysis.

Component Matrix<sup>a</sup>

Component

|       | 1    | 2    | 3    | 4   | 5 |
|-------|------|------|------|-----|---|
| IC01  | .769 |      |      |     |   |
| IC02  | .725 |      |      |     |   |
| IC03  | .766 |      |      |     |   |
| IC04  | .712 |      |      | 506 |   |
| LDS1  | .767 |      |      |     |   |
| LDS2  | .685 |      |      |     |   |
| LDS3  | .755 |      |      |     |   |
| LDS4  | .782 |      |      |     |   |
| LDS5  | .758 |      |      |     |   |
| LDS6  | .777 |      |      |     |   |
| LDS7  | .726 |      |      |     |   |
| LDS8  | .755 |      |      |     |   |
| LDS9  | .682 |      |      |     |   |
| LDS10 |      |      | .573 |     |   |
| IM01  | .681 |      |      |     |   |
| IM02  | .648 |      |      |     |   |
| IM03  | .646 |      |      |     |   |
| IM04  | .682 |      |      |     |   |
| EM01  | .632 |      |      |     |   |
| EM02  | .513 | .658 |      |     |   |
| EM03  |      | .694 |      |     |   |
| EM04  | .553 |      |      |     |   |

a. 5 components extracted.

**Rotated Component Matrix**<sup>a</sup>

|      | Component |   |      |   |   |  |
|------|-----------|---|------|---|---|--|
|      | 1         | 2 | 3    | 4 | 5 |  |
| IC01 |           |   | .549 |   |   |  |
| IC02 |           |   | .705 |   |   |  |
| IC03 |           |   | .790 |   |   |  |
| IC04 |           |   | .800 |   |   |  |
| LDS1 | .670      |   |      |   |   |  |
| LDS2 | .672      |   |      |   |   |  |
| LDS3 | .675      |   |      |   |   |  |
| LDS4 | .604      |   |      |   |   |  |
| LDS5 | .770      |   |      |   |   |  |
| LDS6 | .735      |   |      |   |   |  |
| LDS7 | .721      |   |      |   |   |  |

| LDS8  | .677 |      |      |      |
|-------|------|------|------|------|
| LDS9  | .718 |      |      |      |
| LDS10 |      |      |      | .850 |
| IM01  |      | .747 |      |      |
| IM02  |      | .786 |      |      |
| IM03  |      | .759 |      |      |
| IM04  |      | .703 |      |      |
| EM01  |      |      | .622 |      |
| EM02  |      |      | .829 |      |
| EM03  |      |      | .888 |      |
| EM04  |      |      | .546 |      |

Rotation Method: Varimax with Kaiser Normalization.<sup>a</sup>

a. Rotation converged in 7 iterations.

**Component Transformation Matrix** 

| Component | 1    | 2    | 3    | 4    | 5    |
|-----------|------|------|------|------|------|
| 1         | .678 | .464 | .458 | .319 | .118 |
| 2         | 468  | .352 | 203  | .784 | 025  |
| 3         | .213 | 617  | 127  | .392 | .635 |
| 4         | .174 | .487 | 674  | 276  | .450 |
| 5         | 495  | .207 | .528 | 232  | .616 |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

### **Factor Analysis**

**Correlation Matrix** 

|             |      | OGC1  | OGC2  | OGC3  | OGC4  | OGC5  | OGC6  | OGC7  |
|-------------|------|-------|-------|-------|-------|-------|-------|-------|
| Correlation | OGC1 | 1.000 | .777  | .653  | .601  | .705  | .567  | .571  |
|             | OGC2 | .777  | 1.000 | .708  | .646  | .625  | .567  | .534  |
|             | OGC3 | .653  | .708  | 1.000 | .741  | .680  | .561  | .510  |
|             | OGC4 | .601  | .646  | .741  | 1.000 | .733  | .687  | .449  |
|             | OGC5 | .705  | .625  | .680  | .733  | 1.000 | .659  | .527  |
|             | OGC6 | .567  | .567  | .561  | .687  | .659  | 1.000 | .515  |
|             | OGC7 | .571  | .534  | .510  | .449  | .527  | .515  | 1.000 |

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .887

| Bartlett's Test of Sphericity | Approx. Chi-Square | 1201.707 |
|-------------------------------|--------------------|----------|
|                               | df                 | 21       |
|                               | Sig.               | .000     |

Communalities

|      | Initi |            |
|------|-------|------------|
|      | al    | Extraction |
| OGC1 | 1.00  | .723       |
|      | 0     | .725       |
| OGC2 | 1.00  | .719       |
|      | 0     | .719       |
| OGC3 | 1.00  | .720       |
|      | 0     | .720       |
| OGC4 | 1.00  | .722       |
|      | 0     | .7 22      |
| OGC5 | 1.00  | .741       |
|      | 0     | ./+1       |
| OGC6 | 1.00  | .623       |
|      | 0     | .020       |
| OGC7 | 1.00  | .489       |
|      | 0     | .403       |

Extraction Method: Principal Component Analysis.

**Total Variance Explained** 

| i otal variance Explained |        |                     |              |       |                    |              |
|---------------------------|--------|---------------------|--------------|-------|--------------------|--------------|
|                           | Initia | Initial Eigenvalues |              |       | ion Sums of Square | d Loadings   |
|                           |        | % of                |              |       |                    |              |
| Component                 | Total  | Variance            | Cumulative % | Total | % of Variance      | Cumulative % |
| 1                         | 4.738  | 67.681              | 67.681       | 4.738 | 67.681             | 67.681       |
| 2                         | .625   | 8.927               | 76.608       |       |                    |              |
| 3                         | .542   | 7.747               | 84.355       |       |                    |              |
| 4                         | .382   | 5.451               | 89.807       |       |                    |              |
| 5                         | .330   | 4.710               | 94.517       |       |                    |              |
| 6                         | .208   | 2.976               | 97.493       |       |                    |              |
| 7                         | .176   | 2.507               | 100.000      |       |                    |              |

Extraction Method: Principal Component Analysis.

Component Matrix<sup>a</sup>

| Com  | Policii Matrix |
|------|----------------|
|      | Component      |
|      | 1              |
| OGC1 | .850           |
| OGC2 | .848           |

| OGC3 | .848 |
|------|------|
| OGC4 | .850 |
| OGC5 | .861 |
| OGC6 | .790 |
| OGC7 | .699 |

Reliability

Scale: ALL VARIABLES

**Case Processing Summary** 

|       | , , , , , , , , , , , , , , , , , , , |     |       |
|-------|---------------------------------------|-----|-------|
|       |                                       | N   | %     |
| Cases | Valid                                 | 249 | 100.0 |
|       | Excludeda                             | 0   | .0    |
|       | Total                                 | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

|                  | Cronbach's Alpha |            |
|------------------|------------------|------------|
|                  | Based on         |            |
|                  | Standardized     |            |
| Cronbach's Alpha | Items            | N of Items |
| .916             | .919             | 7          |

#### **Item Statistics**

|      | Mean Std. Deviation |      | N   |
|------|---------------------|------|-----|
| OGC1 | 3.74                | .856 | 249 |
| OGC2 | 3.68                | .857 | 249 |
| OGC3 | 3.90                | .792 | 249 |
| OGC4 | 3.96                | .756 | 249 |
| OGC5 | 3.85                | .804 | 249 |
| OGC6 | 3.82                | .778 | 249 |
| OGC7 | 3.41                | .976 | 249 |

**Summary Item Statistics** 

| Summary item statistics |       |         |         |       |                      |          |            |
|-------------------------|-------|---------|---------|-------|----------------------|----------|------------|
|                         | Mean  | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |
| Item Means              | 3.766 | 3.410   | 3.960   | .550  | 1.161                | .034     | 7          |
| Item Variances          | .696  | .571    | .952    | .382  | 1.668                | .017     | 7          |

**Item-Total Statistics** 

| Scale Mean if |              | Scale Variance if | Corrected Item-   | Squared Multiple | Cronbach's Alpha |
|---------------|--------------|-------------------|-------------------|------------------|------------------|
|               | Item Deleted | Item Deleted      | Total Correlation | Correlation      | if Item Deleted  |
| OGC1          | 22.62        | 16.478            | .789              | .697             | .899             |

| OGC2 | 22.69 | 16.506 | .782 | .688 | .899 |
|------|-------|--------|------|------|------|
| OGC3 | 22.46 | 16.983 | .778 | .661 | .900 |
| OGC4 | 22.41 | 17.258 | .775 | .699 | .901 |
| OGC5 | 22.52 | 16.807 | .795 | .676 | .898 |
| OGC6 | 22.54 | 17.467 | .710 | .558 | .907 |
| OGC7 | 22.96 | 16.833 | .613 | .405 | .921 |

#### **Scale Statistics**

| Mean  | ean Variance Std. Deviation |       | N of Items |
|-------|-----------------------------|-------|------------|
| 26.37 | 22.693                      | 4.764 | 7          |

## Reliability

**Scale: ALL VARIABLES** 

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Reliability Statistics |                  |            |  |  |
|------------------------|------------------|------------|--|--|
|                        | Cronbach's Alpha |            |  |  |
|                        | Based on         |            |  |  |
|                        | Standardized     |            |  |  |
| Cronbach's Alpha       | Items            | N of Items |  |  |
| .890                   | .890             | 4          |  |  |

#### **Item Statistics**

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| IC01 | 3.81 | .843           | 249 |
| IC02 | 3.77 | .834           | 249 |
| IC03 | 3.82 | .849           | 249 |
| IC04 | 3.76 | .840           | 249 |

**Summary Item Statistics** 

|                | Mean  | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |
|----------------|-------|---------|---------|-------|----------------------|----------|------------|
| Item Means     | 3.790 | 3.763   | 3.819   | .056  | 1.015                | .001     | 4          |
| Item Variances | .708  | .696    | .721    | .026  | 1.037                | .000     | 4          |

**Item-Total Statistics** 

|      | Scale Mean if | Scale Variance if | Corrected Item- | Squared Multiple Correlation | Cronbach's Alpha |
|------|---------------|-------------------|-----------------|------------------------------|------------------|
| IC01 | 11.35         | 5.107             | .710            | .542                         | .877             |
| IC02 | 11.39         | 5.006             | .756            | .582                         | .860             |
| IC03 | 11.34         | 4.750             | .824            | .714                         | .833             |
| IC04 | 11.40         | 5.015             | .745            | .643                         | .864             |

#### **Scale Statistics**

| Mean Variance |       | Std. Deviation | N of Items |
|---------------|-------|----------------|------------|
| 15.16         | 8.522 | 2.919          | 4          |

Reliability
Scale: ALL VARIABLES

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

|                  | Cronbach's Alpha |            |
|------------------|------------------|------------|
|                  | Based on         |            |
|                  | Standardized     |            |
| Cronbach's Alpha | Items            | N of Items |
| .926             | .926             | 9          |

#### **Item Statistics**

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| LDS1 | 3.92 | .824           | 249 |
| LDS2 | 3.88 | .882           | 249 |
| LDS3 | 3.87 | .899           | 249 |
| LDS4 | 3.90 | .821           | 249 |
| LDS5 | 4.03 | .815           | 249 |
| LDS6 | 4.16 | .770           | 249 |
| LDS7 | 3.86 | .828           | 249 |
| LDS8 | 4.04 | .756           | 249 |
| LDS9 | 3.83 | .840           | 249 |

**Summary Item Statistics** 

|                | Mean  | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |
|----------------|-------|---------|---------|-------|----------------------|----------|------------|
| Item Means     | 3.942 | 3.831   | 4.157   | .325  | 1.085                | .012     | 9          |
| Item Variances | .684  | .571    | .809    | .238  | 1.417                | .006     | 9          |

#### **Item-Total Statistics**

|      | Scale Mean if | Scale Variance if | Corrected Item-   | Squared Multiple | Cronbach's Alpha |
|------|---------------|-------------------|-------------------|------------------|------------------|
|      | Item Deleted  | Item Deleted      | Total Correlation | Correlation      | if Item Deleted  |
| LDS1 | 31.55         | 27.571            | .755              | .611             | .916             |
| LDS2 | 31.60         | 27.677            | .681              | .519             | .921             |
| LDS3 | 31.61         | 26.925            | .755              | .614             | .916             |
| LDS4 | 31.58         | 27.729            | .738              | .586             | .917             |
| LDS5 | 31.45         | 27.417            | .785              | .690             | .914             |
| LDS6 | 31.32         | 27.919            | .771              | .667             | .915             |
| LDS7 | 31.61         | 27.730            | .730              | .580             | .917             |
| LDS8 | 31.43         | 28.497            | .708              | .547             | .919             |
| LDS9 | 31.64         | 28.174            | .662              | .480             | .922             |

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 35.47 | 34.783   | 5.898          | 9          |

Reliability
Scale: ALL VARIABLES

Case Processing Summary

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Reliability Statistics |                |            |  |  |
|------------------------|----------------|------------|--|--|
|                        | Cronbach's     |            |  |  |
|                        | Alpha Based on |            |  |  |
|                        | Standardized   |            |  |  |
| Cronbach's Alpha       | Items          | N of Items |  |  |
| .626                   | .668           | 4          |  |  |

**Item Statistics** 

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| OC01 | 3.98 | .798           | 249 |

| OC02 | 3.84 | .851  | 249 |
|------|------|-------|-----|
| OC03 | 3.76 | .852  | 249 |
| OC04 | 2.69 | 1.109 | 249 |

**Summary Item Statistics** 

| - · · · · · · · · · · · · · · · · · · · |       |         |         |       |           |          |            |
|-----------------------------------------|-------|---------|---------|-------|-----------|----------|------------|
|                                         |       |         |         |       | Maximum / |          |            |
|                                         | Mean  | Minimum | Maximum | Range | Minimum   | Variance | N of Items |
| Item Means                              | 3.565 | 2.691   | 3.976   | 1.285 | 1.478     | .348     | 4          |
| Item Variances                          | .829  | .637    | 1.231   | .594  | 1.933     | .073     | 4          |

#### **Item-Total Statistics**

|      | Scale Mean if | Scale Variance if | Corrected Item-   | Squared Multiple | Cronbach's Alpha |
|------|---------------|-------------------|-------------------|------------------|------------------|
|      | Item Deleted  | Item Deleted      | Total Correlation | Correlation      | if Item Deleted  |
| OC01 | 10.29         | 3.995             | .508              | .403             | .493             |
| OC02 | 10.42         | 3.648             | .578              | .437             | .434             |
| OC03 | 10.51         | 3.719             | .549              | .407             | .455             |
| OC04 | 11.57         | 4.456             | .120              | .023             | .798             |

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 14.26 | 6.250    | 2.500          | 4          |

Reliability Scale: ALL VARIABLES

**Case Processing Summary** 

|       |           |     | •     |
|-------|-----------|-----|-------|
|       |           | N   | %     |
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

|                  | Cronbach's Alpha   |            |
|------------------|--------------------|------------|
|                  | Based on           |            |
| Cronbach's Alpha | Standardized Items | N of Items |
| .861             | .861               | 4          |

#### **Item Statistics**

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| IM01 | 3.96 | .750           | 249 |
| IM02 | 3.93 | .762           | 249 |
| IM03 | 3.87 | .769           | 249 |
| IM04 | 3.82 | .797           | 249 |

**Summary Item Statistics** 

|                |       |         |         |       | Maximum / |          |            |
|----------------|-------|---------|---------|-------|-----------|----------|------------|
|                | Mean  | Minimum | Maximum | Range | Minimum   | Variance | N of Items |
| Item Means     | 3.894 | 3.815   | 3.960   | .145  | 1.038     | .004     | 4          |
| Item Variances | .592  | .563    | .635    | .072  | 1.128     | .001     | 4          |

**Item-Total Statistics** 

|      |                    | Scale        |                      | Squared     | Cronbach's    |
|------|--------------------|--------------|----------------------|-------------|---------------|
|      | Scale Mean if Item | Variance if  | Corrected Item-Total | Multiple    | Alpha if Item |
|      | Deleted            | Item Deleted | Correlation          | Correlation | Deleted       |
| IM01 | 11.61              | 4.077        | .674                 | .534        | .835          |
| IM02 | 11.64              | 3.973        | .701                 | .556        | .824          |
| IM03 | 11.71              | 3.861        | .737                 | .636        | .809          |
| IM04 | 11.76              | 3.821        | .714                 | .623        | .819          |

**Scale Statistics** 

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 15.57 | 6.681    | 2.585          | 4          |

Reliability

**Scale: ALL VARIABLES** 

**Case Processing Summary** 

|       |           | N   | %     |
|-------|-----------|-----|-------|
| Cases | Valid     | 249 | 100.0 |
|       | Excludeda | 0   | .0    |
|       | Total     | 249 | 100.0 |

a. Listwise deletion based on all variables in the procedure.

**Reliability Statistics** 

| Reliability Statistics |                |            |  |  |
|------------------------|----------------|------------|--|--|
|                        | Cronbach's     |            |  |  |
|                        | Alpha Based on |            |  |  |
|                        | Standardized   |            |  |  |
| Cronbach's Alpha       | Items          | N of Items |  |  |
| .811                   | .811           | 4          |  |  |

**Item Statistics** 

|      | Mean | Std. Deviation | N   |
|------|------|----------------|-----|
| EM01 | 3.73 | .909           | 249 |
| EM02 | 3.57 | .918           | 249 |
| EM03 | 3.28 | .976           | 249 |
| EM04 | 3.71 | .911           | 249 |

**Summary Item Statistics** 

|                |       |         | ·       |       | Maximum / |          |            |
|----------------|-------|---------|---------|-------|-----------|----------|------------|
|                | Mean  | Minimum | Maximum | Range | Minimum   | Variance | N of Items |
| Item Means     | 3.573 | 3.281   | 3.731   | .450  | 1.137     | .043     | 4          |
| Item Variances | .863  | .826    | .953    | .126  | 1.153     | .004     | 4          |

#### **Item-Total Statistics**

|      |               | Scale        |                   | Squared     | Cronbach's    |
|------|---------------|--------------|-------------------|-------------|---------------|
|      | Scale Mean if | Variance if  | Corrected Item-   | Multiple    | Alpha if Item |
|      | Item Deleted  | Item Deleted | Total Correlation | Correlation | Deleted       |
| EM01 | 10.56         | 5.376        | .619              | .397        | .768          |
| EM02 | 10.72         | 5.025        | .716              | .621        | .721          |
| EM03 | 11.01         | 4.915        | .680              | .597        | .738          |
| EM04 | 10.59         | 5.760        | .509              | .290        | .817          |

#### **Scale Statistics**

| Mean  | Variance | Std. Deviation | N of Items |
|-------|----------|----------------|------------|
| 14.29 | 8.813    | 2.969          | 4          |

GET

FILE='E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN CÚU SINH\PHASE 2-SWINBURNE\KÉT QUẢ KHẢO SÁT\NHAP DU LIEU THO\FINAL TONG HOP DU LIEU\SPSS\DATA FULL-3BIẾNCHÍNH-MET-JOB-OGC\FINAL-DATA SPSS.sav'.

DATASET NAME DataSet1 WINDOW=FRONT.

FACTOR

/VARIABLES LDS1 LDS2 LDS3 LDS4 LDS5 LDS6 LDS7 LDS8 LDS9 LDS10

/MISSING LISTWISE

/ANALYSIS LDS1 LDS2 LDS3 LDS4 LDS5 LDS6 LDS7 LDS8 LDS9 LDS10

/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PC

/CRITERIA ITERATE(25)

/ROTATION VARIMAX

/METHOD=CORRELATION.

## **Factor Analysis**

| Notes          |                      |  |  |  |  |
|----------------|----------------------|--|--|--|--|
| Output Created | 24-APR-2020 12:52:08 |  |  |  |  |
| Comments       |                      |  |  |  |  |

| Input                  | Data  Active Dataset Filter    | E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN CứU SINH\PHASE 2-SWINBURNE\KẾT QUẢ KHẢO SÁT\NHAP DU LIEU THO\FINAL TONG HOP DU LIEU\SPSS\DATA FULL- 3BIẾNCHÍNH-MET-JOB-OGC\FINAL-DATA SPSS.sav DataSet1 <none></none> |
|------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Weight                         | <none></none>                                                                                                                                                                                                |
|                        | Split File                     | <none></none>                                                                                                                                                                                                |
|                        | N of Rows in Working Data File | 249                                                                                                                                                                                                          |
| Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing                                                                                                                                                                        |
|                        |                                | values are treated as missing.                                                                                                                                                                               |
|                        | Cases Used                     | LISTWISE: Statistics are based on cases with                                                                                                                                                                 |
|                        |                                | no missing values for any variable used.                                                                                                                                                                     |
| Syntax                 |                                | FACTOR                                                                                                                                                                                                       |
|                        |                                | /VARIABLES LDS1 LDS2 LDS3 LDS4 LDS5                                                                                                                                                                          |
|                        |                                | LDS6 LDS7 LDS8 LDS9 LDS10                                                                                                                                                                                    |
|                        |                                | /MISSING LISTWISE                                                                                                                                                                                            |
|                        |                                | /ANALYSIS LDS1 LDS2 LDS3 LDS4 LDS5                                                                                                                                                                           |
|                        |                                | LDS6 LDS7 LDS8 LDS9 LDS10                                                                                                                                                                                    |
|                        |                                | /PRINT INITIAL CORRELATION KMO                                                                                                                                                                               |
|                        |                                | EXTRACTION ROTATION                                                                                                                                                                                          |
|                        |                                | /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC                                                                                                                                                             |
|                        |                                | /CRITERIA ITERATE(25)                                                                                                                                                                                        |
|                        |                                | /ROTATION VARIMAX                                                                                                                                                                                            |
|                        |                                | /METHOD=CORRELATION.                                                                                                                                                                                         |
| Resources              | Processor Time                 | 00:00:00.02                                                                                                                                                                                                  |
| 1100001000             | Elapsed Time                   | 00:00:00.02                                                                                                                                                                                                  |
|                        | •                              |                                                                                                                                                                                                              |
|                        | Maximum Memory Required        | 13688 (13.367K) bytes                                                                                                                                                                                        |

[DataSet1] E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN CỚU SINH\PHASE 2-SWINBURNE\KÉT QUẢ KHẢO SÁT\NHAP DU LIEU THO\FINAL TONG HOP DU LIEU\SPSS\DATA FULL-3BIÉNCHÍNH-MET-JOB-OGC\FINAL-DATA SPSS.sav

#### **Correlation Matrix**

| out out of matrix |      |      |      |      |     |      |      |      |      |       |
|-------------------|------|------|------|------|-----|------|------|------|------|-------|
|                   |      |      |      |      | LDS |      |      |      |      |       |
|                   | LDS1 | LDS2 | LDS3 | LDS4 | 5   | LDS6 | LDS7 | LDS8 | LDS9 | LDS10 |

| Correlation |       |       |       |       |      |       |       |       |       |      |
|-------------|-------|-------|-------|-------|------|-------|-------|-------|-------|------|
|             | 1.000 | .613  | .693  | .560  | .616 | .560  | .580  | .569  | .592  | .323 |
|             | .613  | 1.000 | .624  | .561  | .526 | .587  | .456  | .503  | .499  | .288 |
|             | .693  | .624  | 1.000 | .603  | .605 | .607  | .614  | .530  | .515  | .339 |
|             | .560  | .561  | .603  | 1.000 | .691 | .658  | .577  | .592  | .465  | .197 |
|             | .616  | .526  | .605  | .691  | 1.00 | .751  | .645  | .568  | .578  | .203 |
|             | .560  | .587  | .607  | .658  | .751 | 1.000 | .585  | .641  | .509  | .179 |
|             | .580  | .456  | .614  | .577  | .645 | .585  | 1.000 | .621  | .586  | .338 |
|             | .569  | .503  | .530  | .592  | .568 | .641  | .621  | 1.000 | .519  | .350 |
|             | .592  | .499  | .515  | .465  | .578 | .509  | .586  | .519  | 1.000 | .433 |

| .323 .288 | .339 .197 .203 | .179 .338 .350 | .433 1.000 |
|-----------|----------------|----------------|------------|
|-----------|----------------|----------------|------------|

### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure    | .917               |          |
|-------------------------------|--------------------|----------|
| Bartlett's Test of Sphericity | Approx. Chi-Square | 1499.525 |
|                               | Df                 | 45       |
|                               | Sig.               | .000     |

Communalities

|       | Initial | Extraction |
|-------|---------|------------|
| LDS1  | 1.000   | .659       |
| LDS2  | 1.000   | .559       |
| LDS3  | 1.000   | .662       |
| LDS4  | 1.000   | .701       |
| LDS5  | 1.000   | .753       |
| LDS6  | 1.000   | .757       |
| LDS7  | 1.000   | .635       |
| LDS8  | 1.000   | .606       |
| LDS9  | 1.000   | .638       |
| LDS10 | 1.000   | .875       |

**Total Variance Explained** 

|           | Initial Eigenvalues |               |              | Extraction S | xtraction Sums of Squared Loadings Rotation Sums of Sc |            |       | ms of Squared | Loadings  |
|-----------|---------------------|---------------|--------------|--------------|--------------------------------------------------------|------------|-------|---------------|-----------|
|           |                     |               |              |              | % of                                                   | Cumulative |       | % of          | Cumulativ |
| Component | Total               | % of Variance | Cumulative % | Total        | Variance                                               | %          | Total | Variance      | e %       |
| 1         | 5.835               | 58.348        | 58.348       | 5.835        | 58.348                                                 | 58.348     | 5.039 | 50.391        | 50.391    |
| 2         | 1.010               | 10.104        | 68.452       | 1.010        | 10.104                                                 | 68.452     | 1.806 | 18.061        | 68.452    |
| 3         | .637                | 6.369         | 74.821       |              |                                                        |            |       |               |           |
| 4         | .512                | 5.125         | 79.946       |              |                                                        |            |       |               |           |
| 5         | .452                | 4.521         | 84.466       |              |                                                        |            |       |               |           |
| 6         | .417                | 4.169         | 88.635       |              |                                                        |            |       |               |           |
| 7         | .342                | 3.417         | 92.052       |              |                                                        |            |       |               |           |
| 8         | .336                | 3.355         | 95.407       |              |                                                        |            |       |               |           |
| 9         | .267                | 2.672         | 98.079       |              |                                                        |            |       |               |           |
| 10        | .192                | 1.921         | 100.000      |              |                                                        |            |       |               |           |

Extraction Method: Principal Component Analysis.

Component Matrix<sup>a</sup>

|       | Component |      |  |  |  |
|-------|-----------|------|--|--|--|
|       | 1         | 2    |  |  |  |
| LDS1  | .810      | .057 |  |  |  |
| LDS2  | .747      | 025  |  |  |  |
| LDS3  | .813      | .011 |  |  |  |
| LDS4  | .791      | 275  |  |  |  |
| LDS5  | .831      | 251  |  |  |  |
| LDS6  | .817      | 300  |  |  |  |
| LDS7  | .795      | .049 |  |  |  |
| LDS8  | .778      | .027 |  |  |  |
| LDS9  | .743      | .292 |  |  |  |
| LDS10 | .432      | .830 |  |  |  |

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

**Rotated Component Matrix**<sup>a</sup>

| Rotated Component Matrix <sup>a</sup> |     |           |  |  |  |
|---------------------------------------|-----|-----------|--|--|--|
|                                       |     | Component |  |  |  |
|                                       | 1   | 2         |  |  |  |
| LDS1                                  | .71 |           |  |  |  |
|                                       | 7   | .381      |  |  |  |
| LDS2                                  | .69 | 200       |  |  |  |
|                                       | 3   | .280      |  |  |  |
| LDS3                                  | .73 | .340      |  |  |  |
|                                       | 9   | .340      |  |  |  |
| LDS4                                  | .83 | .070      |  |  |  |
|                                       | 4   | .070      |  |  |  |
| LDS5                                  | .86 | .108      |  |  |  |
|                                       | 1   |           |  |  |  |
| LDS6                                  | .86 | .058      |  |  |  |
|                                       | 8   |           |  |  |  |
| LDS7                                  | .70 | .368      |  |  |  |
|                                       | 7   |           |  |  |  |
| LDS8                                  | .70 | .340      |  |  |  |
|                                       | 0   |           |  |  |  |
| LDS9                                  | .56 | .569      |  |  |  |
|                                       | 0   |           |  |  |  |
| LDS10                                 | .05 | .934      |  |  |  |
|                                       | 7   |           |  |  |  |

**Extraction Method: Principal Component** 

Analysis.

Rotation Method: Varimax with Kaiser

Normalization.

a. Rotation converged in 3 iterations.

**Component Transformation Matrix** 

| Component | 1    | 2    |
|-----------|------|------|
| 1         | .914 | .406 |
| 2         | 406  | .914 |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

#### FACTOR

/VARIABLES IC01 IC02 IC03 IC04
/MISSING LISTWISE
/ANALYSIS IC01 IC02 IC03 IC04
/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/METHOD=CORRELATION.

# **Factor Analysis**

#### **Notes**

|                        | Notes                          |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 24-APR-2020 12:54:41                         |
| Comments               |                                |                                              |
| Input                  | Data                           | E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN       |
|                        |                                | CỨU SINH\PHASE 2-SWINBURNE\KẾT QUẢ           |
|                        |                                | KHẢO SÁT\NHAP DU LIEU THO\FINAL              |
|                        |                                | TONG HOP DU LIEU\SPSS\DATA FULL-             |
|                        |                                | 3BIÉNCHÍNH-MET-JOB-OGC\FINAL-DATA            |
|                        |                                | SPSS.sav                                     |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
| Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing        |
|                        |                                | values are treated as missing.               |
|                        | Cases Used                     | LISTWISE: Statistics are based on cases with |
|                        |                                | no missing values for any variable used.     |

| Syntax    |                         | FACTOR                            |
|-----------|-------------------------|-----------------------------------|
|           |                         | /VARIABLES IC01 IC02 IC03 IC04    |
|           |                         | /MISSING LISTWISE                 |
|           |                         | /ANALYSIS IC01 IC02 IC03 IC04     |
|           |                         | /PRINT INITIAL CORRELATION KMO    |
|           |                         | EXTRACTION ROTATION               |
|           |                         | /CRITERIA MINEIGEN(1) ITERATE(25) |
|           |                         | /EXTRACTION PC                    |
|           |                         | /CRITERIA ITERATE(25)             |
|           |                         | /ROTATION VARIMAX                 |
|           |                         | /METHOD=CORRELATION.              |
| Resources | Processor Time          | 00:00:00.00                       |
|           | Elapsed Time            | 00:00:00.02                       |
|           | Maximum Memory Required | 3008 (2.938K) bytes               |

#### **Correlation Matrix**

|             |      | IC01  | IC02  | IC03  | IC04  |
|-------------|------|-------|-------|-------|-------|
| Correlation | IC01 | 1.000 | .689  | .662  | .557  |
|             | IC02 | .689  | 1.000 | .686  | .629  |
|             | IC03 | .662  | .686  | 1.000 | .793  |
|             | IC04 | .557  | .629  | .793  | 1.000 |

### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |      | .790    |
|--------------------------------------------------|------|---------|
| Bartlett's Test of Sphericity Approx. Chi-Square |      | 601.521 |
|                                                  | Df   | 6       |
|                                                  | Sig. | .000    |

### Communalities

|      | Initial | Extraction |
|------|---------|------------|
| IC01 | 1.000   | .696       |
| IC02 | 1.000   | .748       |
| IC03 | 1.000   | .827       |
| IC04 | 1.000   | .740       |

Extraction Method: Principal

Component Analysis.

**Total Variance Explained** 

|           | Total Variance Explained |               |                                     |       |               |              |
|-----------|--------------------------|---------------|-------------------------------------|-------|---------------|--------------|
|           | Initial Eigenvalues      |               | Extraction Sums of Squared Loadings |       |               |              |
| Component | Total                    | % of Variance | Cumulative %                        | Total | % of Variance | Cumulative % |

| 1 | 3.011 | 75.269 | 75.269  | 3.011 | 75.269 | 75.269 |
|---|-------|--------|---------|-------|--------|--------|
| 2 | .493  | 12.316 | 87.586  |       |        |        |
| 3 | .306  | 7.640  | 95.226  |       |        |        |
| 4 | .191  | 4.774  | 100.000 |       |        |        |

#### Component Matrix<sup>a</sup>

|      | Component |
|------|-----------|
|      | 1         |
| IC01 | .834      |
| IC02 | .865      |
| IC03 | .909      |
| IC04 | .860      |

FACTOR

/VARIABLES IC01 IC02 IC03 IC04

/MISSING LISTWISE

/ANALYSIS IC01 IC02 IC03 IC04

/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PC

/CRITERIA ITERATE(25)

/ROTATION VARIMAX

/METHOD=CORRELATION.

# **Factor Analysis**

#### **Notes**

| -                      |                                |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 24-APR-2020 12:55:45                         |
| Comments               |                                |                                              |
| Input                  | Data                           | E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN       |
|                        |                                | CỨU SINH\PHASE 2-SWINBURNE\KÉT QUẢ           |
|                        |                                | KHẢO SÁT\NHAP DU LIEU THO\FINAL              |
|                        |                                | TONG HOP DU LIEU\SPSS\DATA FULL-             |
|                        |                                | 3BIÉNCHÍNH-MET-JOB-OGC\FINAL-DATA            |
|                        |                                | SPSS.sav                                     |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
| Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing        |
|                        |                                | values are treated as missing.               |
|                        | Cases Used                     | LISTWISE: Statistics are based on cases with |
|                        |                                | no missing values for any variable used.     |

|           |                         | /MISSING LISTWISE<br>/ANALYSIS IC01 IC02 IC03 IC04 |
|-----------|-------------------------|----------------------------------------------------|
|           |                         | /PRINT INITIAL CORRELATION KMO                     |
|           |                         | EXTRACTION ROTATION                                |
|           |                         | /CRITERIA MINEIGEN(1) ITERATE(25)                  |
|           |                         | /EXTRACTION PC                                     |
|           |                         | /CRITERIA ITERATE(25)                              |
|           |                         | /ROTATION VARIMAX                                  |
|           |                         | /METHOD=CORRELATION.                               |
| Resources | Processor Time          | 00:00:00.00                                        |
|           | Elapsed Time            | 00:00:00.03                                        |
|           | Maximum Memory Required | 3008 (2.938K) bytes                                |

**Correlation Matrix** 

|             |      | Ooriciati |       |       |       |
|-------------|------|-----------|-------|-------|-------|
|             |      | IC01      | IC02  | IC03  | IC04  |
| Correlation | IC01 | 1.000     | .689  | .662  | .557  |
|             | IC02 | .689      | 1.000 | .686  | .629  |
|             | IC03 | .662      | .686  | 1.000 | .793  |
|             | IC04 | .557      | .629  | .793  | 1.000 |

### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of | .790    |      |
|-------------------------------|---------|------|
| Bartlett's Test of Sphericity | 601.521 |      |
|                               | 6       |      |
|                               | Sig.    | .000 |

### Communalities

|      | Initial | Extraction |
|------|---------|------------|
| IC01 | 1.000   | .696       |
| IC02 | 1.000   | .748       |
| IC03 | 1.000   | .827       |
| IC04 | 1.000   | .740       |

Extraction Method: Principal

Component Analysis.

### **Total Variance Explained**

|           |                                  | Initial Eigenva | alues   | Extrac | tion Sums of Square | ed Loadings  |
|-----------|----------------------------------|-----------------|---------|--------|---------------------|--------------|
| Component | Total % of Variance Cumulative % |                 |         | Total  | % of Variance       | Cumulative % |
| 1         | 3.011                            | 75.269          | 75.269  | 3.011  | 75.269              | 75.269       |
| 2         | .493                             | 12.316          | 87.586  |        |                     |              |
| 3         | .306                             | 7.640           | 95.226  |        |                     |              |
| 4         | .191                             | 4.774           | 100.000 |        |                     |              |

#### **Component Matrix**<sup>a</sup>

|      | Component |  |  |
|------|-----------|--|--|
|      | 1         |  |  |
| IC01 | .834      |  |  |
| IC02 | .865      |  |  |
| IC03 | .909      |  |  |
| IC04 | .860      |  |  |

FACTOR

/VARIABLES IM01 IM02 IM03 IM04

/MISSING LISTWISE

/ANALYSIS IM01 IM02 IM03 IM04

/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PC

/CRITERIA ITERATE(25)

/ROTATION VARIMAX

/METHOD=CORRELATION.

# **Factor Analysis**

### Notes

|                        | Notes                          |                                        |
|------------------------|--------------------------------|----------------------------------------|
| Output Created         |                                | 24-APR-2020 12:56:48                   |
| Comments               |                                |                                        |
| Input                  | Data                           | E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN |
|                        |                                | CỨU SINH\PHASE 2-SWINBURNE\KẾT QUẢ     |
|                        |                                | KHẢO SÁT\NHAP DU LIEU THO\FINAL        |
|                        |                                | TONG HOP DU LIEU\SPSS\DATA FULL-       |
|                        |                                | 3BIÉNCHÍNH-MET-JOB-OGC\FINAL-DATA      |
|                        |                                | SPSS.sav                               |
|                        | Active Dataset                 | DataSet1                               |
|                        | Filter                         | <none></none>                          |
|                        | Weight                         | <none></none>                          |
|                        | Split File                     | <none></none>                          |
|                        | N of Rows in Working Data File | 249                                    |
| Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing  |
|                        |                                | values are treated as missing.         |

| 1         | Cases Used              | LISTWISE: Statistics are based on cases with |
|-----------|-------------------------|----------------------------------------------|
|           |                         | no missing values for any variable used.     |
| Syntax    |                         | FACTOR                                       |
|           |                         | /VARIABLES IM01 IM02 IM03 IM04               |
|           |                         | /MISSING LISTWISE                            |
|           |                         | /ANALYSIS IM01 IM02 IM03 IM04                |
|           |                         | /PRINT INITIAL CORRELATION KMO               |
|           |                         | EXTRACTION ROTATION                          |
|           |                         | /CRITERIA MINEIGEN(1) ITERATE(25)            |
|           |                         | /EXTRACTION PC                               |
|           |                         | /CRITERIA ITERATE(25)                        |
|           |                         | /ROTATION VARIMAX                            |
|           |                         | /METHOD=CORRELATION.                         |
| Resources | Processor Time          | 00:00:00.00                                  |
|           | Elapsed Time            | 00:00:00.02                                  |
|           | Maximum Memory Required | 3008 (2.938K) bytes                          |

#### **Correlation Matrix**

|             |      | Oomolati |       |       |       |
|-------------|------|----------|-------|-------|-------|
|             |      | IM01     | IM02  | IM03  | IM04  |
| Correlation | IM01 | 1.000    | .708  | .543  | .507  |
|             | IM02 | .708     | 1.000 | .556  | .551  |
|             | IM03 | .543     | .556  | 1.000 | .776  |
|             | IM04 | .507     | .551  | .776  | 1.000 |

### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of | .733    |      |
|-------------------------------|---------|------|
| Bartlett's Test of Sphericity | 518.149 |      |
|                               | Df      | 6    |
|                               | Sig.    | .000 |

#### Communalities

|      | Initial | Extraction |
|------|---------|------------|
| IM01 | 1.000   | .667       |
| IM02 | 1.000   | .699       |
| IM03 | 1.000   | .739       |
| IM04 | 1.000   | .716       |

Extraction Method: Principal

Component Analysis.

#### **Total Variance Explained**

|           | Total Variance Explained |               |              |                                     |               |              |  |  |
|-----------|--------------------------|---------------|--------------|-------------------------------------|---------------|--------------|--|--|
|           | Initial Eigenvalues      |               |              | Extraction Sums of Squared Loadings |               |              |  |  |
| Component | Total                    | % of Variance | Cumulative % | Total                               | % of Variance | Cumulative % |  |  |

| 1 | 2.821 | 70.520 | 70.520  | 2.821 | 70.520 | 70.520 |
|---|-------|--------|---------|-------|--------|--------|
| 2 | .665  | 16.621 | 87.141  |       |        |        |
| 3 | .294  | 7.347  | 94.488  |       |        |        |
| 4 | .220  | 5.512  | 100.000 |       |        |        |

### Component Matrix<sup>a</sup>

|      | Component |
|------|-----------|
|      | 1         |
| IM01 | .817      |
| IM02 | .836      |
| IM03 | .859      |
| IM04 | .846      |

#### FACTOR

```
/VARIABLES EM01 EM02 EM03 EM04
/MISSING LISTWISE
/ANALYSIS EM01 EM02 EM03 EM04
/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/METHOD=CORRELATION.
```

# **Factor Analysis**

#### Notes

|                        | Notes                          |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 24-APR-2020 13:19:36                         |
| Comments               |                                |                                              |
| Input                  | Data                           | E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN       |
|                        |                                | CỨU SINH\PHASE 2-SWINBURNE\KẾT QUẢ           |
|                        |                                | KHẢO SÁT\NHAP DU LIEU THO\FINAL              |
|                        |                                | TONG HOP DU LIEU\SPSS\DATA FULL-             |
|                        |                                | 3BIÉNCHÍNH-MET-JOB-OGC\FINAL-DATA            |
|                        |                                | SPSS.sav                                     |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
| Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing        |
|                        |                                | values are treated as missing.               |
|                        | Cases Used                     | LISTWISE: Statistics are based on cases with |
|                        |                                | no missing values for any variable used.     |

| Syntax    |                             | FACTOR                         |
|-----------|-----------------------------|--------------------------------|
|           |                             | /VARIABLES EM01 EM02 EM03 EM04 |
|           |                             | /MISSING LISTWISE              |
|           |                             | /ANALYSIS EM01 EM02 EM03 EM04  |
|           |                             | /PRINT INITIAL CORRELATION KMO |
|           |                             | EXTRACTION ROTATION            |
|           | /CRITERIA MINEIGEN(1) ITERA |                                |
|           |                             | /EXTRACTION PC                 |
|           |                             | /CRITERIA ITERATE(25)          |
|           |                             | /ROTATION VARIMAX              |
|           |                             | /METHOD=CORRELATION.           |
| Resources | Processor Time              | 00:00:00.02                    |
|           | Elapsed Time                | 00:00:00.02                    |
|           | Maximum Memory Required     | 3008 (2.938K) bytes            |

#### **Correlation Matrix**

|             |           | EM01  | EM02  | EM03  | EM04  |
|-------------|-----------|-------|-------|-------|-------|
| Correlation | -<br>EM01 | 1.000 | .539  | .490  | .508  |
|             | EM02      | .539  | 1.000 | .764  | .405  |
|             | EM03      | .490  | .764  | 1.000 | .397  |
|             | EM04      | .508  | .405  | .397  | 1.000 |

### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of Sa | .718    |      |
|----------------------------------|---------|------|
| Bartlett's Test of Sphericity    | 389.375 |      |
|                                  | 6       |      |
|                                  | Sig.    | .000 |

### Communalities

|      | Initial | Extraction |
|------|---------|------------|
| EM01 | 1.000   | .621       |
| EM02 | 1.000   | .747       |
| EM03 | 1.000   | .714       |
| EM04 | 1.000   | .482       |

Extraction Method: Principal Component

Analysis.

Total Variance Explained

|           |                     | 100           | ai variance Expi | anica                               |               |              |  |
|-----------|---------------------|---------------|------------------|-------------------------------------|---------------|--------------|--|
|           | Initial Eigenvalues |               |                  | Extraction Sums of Squared Loadings |               |              |  |
| Component | Total               | % of Variance | Cumulative %     | Total                               | % of Variance | Cumulative % |  |

| 1 | 2.564 | 64.107 | 64.107  | 2.564 | 64.107 | 64.107 |
|---|-------|--------|---------|-------|--------|--------|
| 2 | .735  | 18.372 | 82.479  |       |        |        |
| 3 | .468  | 11.709 | 94.189  |       |        |        |
| 4 | .232  | 5.811  | 100.000 |       |        |        |

#### **Component Matrix**<sup>a</sup>

|      | Component |
|------|-----------|
|      | 1         |
| EM01 | .788      |
| EM02 | .864      |
| EM03 | .845      |
| EM04 | .694      |

#### FACTOR

```
/VARIABLES OGC1 OGC2 OGC3 OGC4 OGC5 OGC6 OGC7
/MISSING LISTWISE
/ANALYSIS OGC1 OGC2 OGC3 OGC4 OGC5 OGC6 OGC7
/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/METHOD=CORRELATION.
```

# **Factor Analysis**

#### **Notes**

|                        | Notes                          |                                              |
|------------------------|--------------------------------|----------------------------------------------|
| Output Created         |                                | 24-APR-2020 13:21:38                         |
| Comments               |                                |                                              |
| Input                  | Data                           | E:\Dropbox\D Drive\LY DAN THANH\NGHIÊN       |
|                        |                                | CỨU SINH\PHASE 2-SWINBURNE\KẾT QUẢ           |
|                        |                                | KHẢO SÁT\NHAP DU LIEU THO\FINAL              |
|                        |                                | TONG HOP DU LIEU\SPSS\DATA FULL-             |
|                        |                                | 3BIÉNCHÍNH-MET-JOB-OGC\FINAL-DATA            |
|                        |                                | SPSS.sav                                     |
|                        | Active Dataset                 | DataSet1                                     |
|                        | Filter                         | <none></none>                                |
|                        | Weight                         | <none></none>                                |
|                        | Split File                     | <none></none>                                |
|                        | N of Rows in Working Data File | 249                                          |
| Missing Value Handling | Definition of Missing          | MISSING=EXCLUDE: User-defined missing        |
|                        |                                | values are treated as missing.               |
|                        | Cases Used                     | LISTWISE: Statistics are based on cases with |
|                        |                                | no missing values for any variable used.     |

| Syntax    |                         | FACTOR                            |
|-----------|-------------------------|-----------------------------------|
|           |                         | /VARIABLES OGC1 OGC2 OGC3 OGC4    |
|           |                         | OGC5 OGC6 OGC7                    |
|           |                         | /MISSING LISTWISE                 |
|           |                         | /ANALYSIS OGC1 OGC2 OGC3 OGC4     |
|           |                         | OGC5 OGC6 OGC7                    |
|           |                         | /PRINT INITIAL CORRELATION KMO    |
|           |                         | EXTRACTION ROTATION               |
|           |                         | /CRITERIA MINEIGEN(1) ITERATE(25) |
|           |                         | /EXTRACTION PC                    |
|           |                         | /CRITERIA ITERATE(25)             |
|           |                         | /ROTATION VARIMAX                 |
|           |                         | /METHOD=CORRELATION.              |
| Resources | Processor Time          | 00:00:00.02                       |
|           | Elapsed Time            | 00:00:00.01                       |
|           | Maximum Memory Required | 7376 (7.203K) bytes               |

#### **Correlation Matrix**

|             |      | OGC1  | OGC2  | OGC3  | OGC4  | OGC5  | OGC6  | OGC7  |
|-------------|------|-------|-------|-------|-------|-------|-------|-------|
| Correlation | OGC1 | 1.000 | .777  | .653  | .601  | .705  | .567  | .571  |
|             | OGC2 | .777  | 1.000 | .708  | .646  | .625  | .567  | .534  |
|             | OGC3 | .653  | .708  | 1.000 | .741  | .680  | .561  | .510  |
|             | OGC4 | .601  | .646  | .741  | 1.000 | .733  | .687  | .449  |
|             | OGC5 | .705  | .625  | .680  | .733  | 1.000 | .659  | .527  |
|             | OGC6 | .567  | .567  | .561  | .687  | .659  | 1.000 | .515  |
|             | OGC7 | .571  | .534  | .510  | .449  | .527  | .515  | 1.000 |

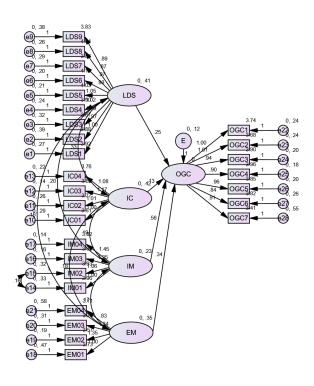
### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure of                    | .887 |          |
|--------------------------------------------------|------|----------|
| Bartlett's Test of Sphericity Approx. Chi-Square |      | 1201.707 |
|                                                  | 21   |          |
|                                                  | Sig. | .000     |

## Communalities

|      | Initial | Extraction |
|------|---------|------------|
| OGC1 | 1.000   | .723       |
| OGC2 | 1.000   | .719       |
| OGC3 | 1.000   | .720       |
| OGC4 | 1.000   | .722       |
| OGC5 | 1.000   | .741       |

| OGC6 | 1.000 | .623 |
|------|-------|------|
| OGC7 | 1.000 | .489 |


**Total Variance Explained** 

| rotal variation Explained |                     |               |              |          |                |               |
|---------------------------|---------------------|---------------|--------------|----------|----------------|---------------|
|                           | Initial Eigenvalues |               |              | Extracti | on Sums of Squ | ared Loadings |
| Component                 | Total               | % of Variance | Cumulative % | Total    | % of Variance  | Cumulative %  |
| 1                         | 4.738               | 67.681        | 67.681       | 4.738    | 67.681         | 67.681        |
| 2                         | .625                | 8.927         | 76.608       |          |                |               |
| 3                         | .542                | 7.747         | 84.355       |          |                |               |
| 4                         | .382                | 5.451         | 89.807       |          |                |               |
| 5                         | .330                | 4.710         | 94.517       |          |                |               |
| 6                         | .208                | 2.976         | 97.493       |          |                |               |
| 7                         | .176                | 2.507         | 100.000      |          |                |               |

Extraction Method: Principal Component Analysis.

#### **Component Matrix**<sup>a</sup>

| Component Matrix |           |  |  |
|------------------|-----------|--|--|
|                  | Component |  |  |
|                  | 1         |  |  |
| OGC1             | .850      |  |  |
| OGC2             | .848      |  |  |
| OGC3             | .848      |  |  |
| OGC4             | .850      |  |  |
| OGC5             | .861      |  |  |
| OGC6             | .790      |  |  |
| OGC7             | .699      |  |  |



# MODEL FIT

**CMIN** 

| CITALIT            |      |          |     |      |         |
|--------------------|------|----------|-----|------|---------|
| Model              | NPAR | CMIN     | DF  | P    | CMIN/DF |
| Default model      | 67   | 1002.283 | 339 | .000 | 2.957   |
| Saturated model    | 406  | .000     | 0   |      |         |
| Independence model | 28   | 5559.469 | 378 | .000 | 14.708  |

### RMR, GFI

| Model              | RMR  | GFI   | AGFI | PGFI |
|--------------------|------|-------|------|------|
| Default model      | .056 | .773  | .728 | .645 |
| Saturated model    | .000 | 1.000 |      |      |
| Independence model | .312 | .143  | .080 | .133 |

**Baseline Comparisons** 

| Model              | NFI    | RFI  | IFI    | TLI  | CFI   |
|--------------------|--------|------|--------|------|-------|
| Model              | Delta1 | rho1 | Delta2 | rho2 | СГІ   |
| Default model      | .820   | .799 | .873   | .857 | .872  |
| Saturated model    | 1.000  |      | 1.000  |      | 1.000 |
| Independence model | .000   | .000 | .000   | .000 | .000  |

Parsimony-Adjusted Measures

| Model              | PRATIO | PNFI | PCFI |
|--------------------|--------|------|------|
| Default model      | .897   | .735 | .782 |
| Saturated model    | .000   | .000 | .000 |
| Independence model | 1.000  | .000 | .000 |

**NCP** 

| Model              | NCP      | LO 90    | HI 90    |
|--------------------|----------|----------|----------|
| Default model      | 663.283  | 572.125  | 762.061  |
| Saturated model    | .000     | .000     | .000     |
| Independence model | 5181.469 | 4943.614 | 5425.753 |

#### **FMIN**

| Model              | FMIN   | F0     | LO 90  | HI 90  |
|--------------------|--------|--------|--------|--------|
| Default model      | 4.041  | 2.675  | 2.307  | 3.073  |
| Saturated model    | .000   | .000   | .000   | .000   |
| Independence model | 22.417 | 20.893 | 19.934 | 21.878 |

### RMSEA

| Model              | RMSEA | LO 90 | HI 90 | PCLOSE |
|--------------------|-------|-------|-------|--------|
| Default model      | .089  | .082  | .095  | .000   |
| Independence model | .235  | .230  | .241  | .000   |

### **AIC**

| Model              | AIC      | BCC      | BIC      | CAIC     |
|--------------------|----------|----------|----------|----------|
| Default model      | 1136.283 | 1154.027 | 1371.952 | 1438.952 |
| Saturated model    | 812.000  | 919.525  | 2240.086 | 2646.086 |
| Independence model | 5615.469 | 5622.884 | 5713.958 | 5741.958 |

#### **ECVI**

| Model              | ECVI   | LO 90  | HI 90  | MECVI  |
|--------------------|--------|--------|--------|--------|
| Default model      | 4.582  | 4.214  | 4.980  | 4.653  |
| Saturated model    | 3.274  | 3.274  | 3.274  | 3.708  |
| Independence model | 22.643 | 21.684 | 23.628 | 22.673 |

### HOELTER

| Model              | HOELTER | HOELTER |  |
|--------------------|---------|---------|--|
| Model              | .05     | .01     |  |
| Default model      | 95      | 100     |  |
| Independence model | 19      | 20      |  |

Minimization: .016 Miscellaneous: .698 .505 Bootstrap: Total: 1.219

### **ESTIMATES**

Estimates (Group number 1 - Default model) Scalar Estimates (Group number 1 - Default model)

**Maximum Likelihood Estimates** 

**Regression Weights: (Group number 1 - Default model)** 

| regression (veignes: (Group number 1 Detaut model) |          |      |       |      |       |  |  |  |
|----------------------------------------------------|----------|------|-------|------|-------|--|--|--|
|                                                    | Estimate | S.E. | C.R.  | P    | Label |  |  |  |
| OGC < LDS                                          | .250     | .092 | 2.733 | .006 |       |  |  |  |
| OGC < IC                                           | .131     | .088 | 1.479 | .139 |       |  |  |  |
| OGC < IM                                           | .562     | .109 | 5.133 | ***  |       |  |  |  |
| OGC < EM                                           | .344     | .072 | 4.774 | ***  |       |  |  |  |

|        |     | Estimate | S.E. | C.R.   | P   | Label |
|--------|-----|----------|------|--------|-----|-------|
| LDS1 < | LDS | 1.000    |      |        |     |       |
| LDS2 < | LDS | .966     | .083 | 11.692 | *** |       |
| LDS3 < | LDS | 1.095    | .082 | 13.301 | *** |       |
| LDS4 < | LDS | 1.025    | .075 | 13.722 | *** |       |
| LDS5 < | LDS | 1.046    | .074 | 14.213 | *** |       |
| LDS6 < | LDS | .976     | .070 | 13.995 | *** |       |
| LDS7 < | LDS | .974     | .076 | 12.746 | *** |       |
| LDS8 < | LDS | .874     | .070 | 12.496 | *** |       |
| LDS9 < | LDS | .888     | .079 | 11.214 | *** |       |
| IC01 < | IC  | 1.000    |      |        |     |       |
| IC02 < | IC  | 1.014    | .078 | 13.026 | *** |       |
| IC03 < | IC  | 1.171    | .078 | 15.062 | *** |       |
| IC04 < | IC  | 1.076    | .078 | 13.856 | *** |       |
| IM01 < | IM  | 1.000    |      |        |     |       |
| IM02 < | IM  | 1.062    | .083 | 12.735 | *** |       |
| IM03 < | IM  | 1.350    | .125 | 10.831 | *** |       |
| IM04 < | IM  | 1.450    | .131 | 11.041 | *** |       |
| EM01 < | EM  | 1.000    |      |        |     |       |
| EM02 < | EM  | 1.353    | .123 | 10.989 | *** |       |
| EM03 < | EM  | 1.342    | .126 | 10.615 | *** |       |
| EM04 < | EM  | .827     | .110 | 7.545  | *** |       |
| OGC1 < | OGC | 1.000    |      |        |     |       |
| OGC2 < | OGC | 1.009    | .066 | 15.176 | *** |       |
| OGC3 < | OGC | .937     | .061 | 15.277 | *** |       |
| OGC4 < | OGC | .900     | .058 | 15.432 | *** |       |
| OGC5 < | OGC | .961     | .062 | 15.539 | *** |       |
| OGC6 < | OGC | .836     | .063 | 13.339 | *** |       |
| OGC7 < | OGC | .908     | .082 | 11.062 | *** |       |

# $Standardized\ Regression\ Weights:\ (Group\ number\ 1\ -\ Default\ model)$

|      |   |     | Estimate |
|------|---|-----|----------|
| OGC  | < | LDS | .230     |
| OGC  | < | IC  | .121     |
| OGC  | < | IM  | .389     |
| OGC  | < | EM  | .293     |
| LDS1 | < | LDS | .778     |
| LDS2 | < | LDS | .702     |
| LDS3 | < | LDS | .780     |
| LDS4 | < | LDS | .800     |
| LDS5 | < | LDS | .822     |

|      |   |     | Estimate |
|------|---|-----|----------|
| LDS6 | < | LDS | .813     |
| LDS7 | < | LDS | .754     |
| LDS8 | < | LDS | .742     |
| LDS9 | < | LDS | .677     |
| IC01 | < | IC  | .769     |
| IC02 | < | IC  | .788     |
| IC03 | < | IC  | .894     |
| IC04 | < | IC  | .830     |
| IM01 | < | IM  | .644     |
| IM02 | < | IM  | .674     |
| IM03 | < | IM  | .848     |
| IM04 | < | IM  | .879     |
| EM01 | < | EM  | .655     |
| EM02 | < | EM  | .878     |
| EM03 | < | EM  | .818     |
| EM04 | < | EM  | .540     |
| OGC1 | < | OGC | .815     |
| OGC2 | < | OGC | .821     |
| OGC3 | < | OGC | .825     |
| OGC4 | < | OGC | .830     |
| OGC5 | < | OGC | .834     |
| OGC6 | < | OGC | .749     |
| OGC7 | < | OGC | .649     |

## **Intercepts:** (Group number 1 - Default model)

|      | Estimate | S.E. | C.R.   | P   | Label |
|------|----------|------|--------|-----|-------|
| LDS1 | 3.920    | .052 | 75.061 | *** |       |
| LDS2 | 3.876    | .056 | 69.297 | *** |       |
| LDS3 | 3.867    | .057 | 67.851 | *** |       |
| LDS4 | 3.896    | .052 | 74.846 | *** |       |
| LDS5 | 4.028    | .052 | 77.973 | *** |       |
| LDS6 | 4.157    | .049 | 85.225 | *** |       |
| LDS7 | 3.859    | .052 | 73.540 | *** |       |
| LDS8 | 4.040    | .048 | 84.371 | *** |       |
| LDS9 | 3.831    | .053 | 71.988 | *** |       |
| IC01 | 3.811    | .053 | 71.364 | *** |       |
| IC02 | 3.767    | .053 | 71.277 | *** |       |
| IC03 | 3.819    | .054 | 70.964 | *** |       |
| IC04 | 3.763    | .053 | 70.684 | *** |       |
| IM01 | 3.960    | .048 | 83.284 | *** |       |

|      | Estimate | S.E. | C.R.   | P   | Label |
|------|----------|------|--------|-----|-------|
| IM02 | 3.932    | .048 | 81.465 | *** |       |
| IM03 | 3.867    | .049 | 79.368 | *** |       |
| IM04 | 3.815    | .051 | 75.545 | *** |       |
| EM01 | 3.731    | .058 | 64.758 | *** |       |
| EM02 | 3.574    | .058 | 61.457 | *** |       |
| EM03 | 3.281    | .062 | 53.039 | *** |       |
| EM04 | 3.707    | .058 | 64.242 | *** |       |
| OGC1 | 3.743    | .054 | 69.031 | *** |       |
| OGC2 | 3.679    | .054 | 67.707 | *** |       |
| OGC3 | 3.904    | .050 | 77.744 | *** |       |
| OGC4 | 3.960    | .048 | 82.694 | *** |       |
| OGC5 | 3.847    | .051 | 75.537 | *** |       |
| OGC6 | 3.823    | .049 | 77.516 | *** |       |
| OGC7 | 3.410    | .062 | 55.129 | *** |       |

# $Covariances: (Group \ number \ 1 - Default \ model)$

|            | Estimate | S.E. | C.R.  | P   | Label |
|------------|----------|------|-------|-----|-------|
| LDS <> IC  | .334     | .043 | 7.769 | *** |       |
| LDS <> IM  | .199     | .031 | 6.397 | *** |       |
| EM <> LDS  | .165     | .032 | 5.075 | *** |       |
| IC <> IM   | .191     | .031 | 6.170 | *** |       |
| EM <> IC   | .182     | .034 | 5.309 | *** |       |
| EM <> IM   | .170     | .030 | 5.708 | *** |       |
| e14 <> e15 | .156     | .026 | 6.092 | *** |       |

## **Correlations: (Group number 1 - Default model)**

|     |    |     | Estimate |
|-----|----|-----|----------|
| LDS | <> | IC  | .808     |
| LDS | <> | IM  | .644     |
| EM  | <> | LDS | .434     |
| IC  | <> | IM  | .612     |
| EM  | <> | IC  | .473     |
| EM  | <> | IM  | .595     |
| e14 | <> | e15 | .485     |

## Variances: (Group number 1 - Default model)

|     | Estimate | S.E. | C.R.  | P   | Label |
|-----|----------|------|-------|-----|-------|
| LDS | .409     | .057 | 7.178 | *** |       |
| IC  | .419     | .060 | 6.989 | *** |       |

|     | Estimate | S.E. | C.R.   | P   | Label |
|-----|----------|------|--------|-----|-------|
| IM  | .233     | .043 | 5.418  | *** |       |
| EM  | .353     | .064 | 5.490  | *** |       |
| Е   | .121     | .019 | 6.284  | *** |       |
| e1  | .267     | .027 | 10.010 | *** |       |
| e2  | .394     | .038 | 10.424 | *** |       |
| e3  | .315     | .032 | 9.992  | *** |       |
| e4  | .242     | .025 | 9.829  | *** |       |
| e5  | .214     | .022 | 9.597  | *** |       |
| e6  | .200     | .021 | 9.706  | *** |       |
| e7  | .295     | .029 | 10.170 | *** |       |
| e8  | .256     | .025 | 10.239 | *** |       |
| e9  | .380     | .036 | 10.514 | *** |       |
| e10 | .289     | .030 | 9.646  | *** |       |
| e11 | .262     | .028 | 9.445  | *** |       |
| e12 | .145     | .021 | 7.013  | *** |       |
| e13 | .218     | .025 | 8.821  | *** |       |
| e14 | .328     | .032 | 10.159 | *** |       |
| e15 | .315     | .032 | 10.003 | *** |       |
| e16 | .165     | .022 | 7.492  | *** |       |
| e17 | .144     | .022 | 6.403  | *** |       |
| e18 | .470     | .047 | 9.956  | *** |       |
| e19 | .193     | .034 | 5.711  | *** |       |
| e20 | .314     | .041 | 7.657  | *** |       |
| e21 | .585     | .056 | 10.499 | *** |       |
| e22 | .245     | .025 | 9.668  | *** |       |
| e23 | .239     | .025 | 9.603  | *** |       |
| e24 | .200     | .021 | 9.559  | *** |       |
| e25 | .176     | .019 | 9.488  | *** |       |
| e26 | .195     | .021 | 9.436  | *** |       |
| e27 | .265     | .026 | 10.192 | *** |       |
| e28 | .550     | .052 | 10.601 | *** |       |

# SUMMARY OF BOOTSTRAP ITERATIONS

| Iterations | Method 0 | Method 1 | Method 2 |
|------------|----------|----------|----------|
| 1          | 0        | 0        | 0        |
| 2          | 0        | 0        | 0        |
| 3          | 0        | 0        | 0        |
| 4          | 0        | 0        | 0        |
| 5          | 0        | 0        | 0        |

| Iterations | Method 0 | Method 1 | Method 2 |
|------------|----------|----------|----------|
| 6          | 0        | 0        | 0        |
| 7          | 0        | 0        | 0        |
| 8          | 0        | 0        | 0        |
| 9          | 0        | 0        | 0        |
| 10         | 0        | 3        | 0        |
| 11         | 0        | 11       | 0        |
| 12         | 0        | 22       | 0        |
| 13         | 0        | 23       | 0        |
| 14         | 0        | 40       | 0        |
| 15         | 0        | 21       | 0        |
| 16         | 0        | 13       | 0        |
| 17         | 0        | 21       | 0        |
| 18         | 0        | 9        | 0        |
| 19         | 0        | 37       | 0        |
| Total      | 0        | 200      | 0        |

0 bootstrap samples were unused because of a singular covariance matrix. 0 bootstrap samples were unused because a solution was not found. 200 usable bootstrap samples were obtained.

| 200 usuote oootstrup |          |        |
|----------------------|----------|--------|
|                      |          |        |
|                      | 1249.775 | *      |
|                      | 1294.262 | ***    |
|                      | 1338.748 | **     |
|                      | 1383.234 | ****   |
|                      | 1427.721 | ****** |
|                      | 1472.207 | ****** |
|                      | 1516.694 | ****** |
| N = 200              | 1561.180 | ****** |
| Mean = $1542.829$    | 1605.667 | *****  |
| S. $e. = 8.512$      | 1650.153 | *****  |
|                      | 1694.640 | *****  |
|                      | 1739.126 | ***    |
|                      | 1783.612 | ****   |
|                      | 1828.099 | *      |
|                      | 1872.585 | *      |
|                      |          |        |
|                      |          |        |
|                      | 1080.637 | **     |
|                      | 1103.063 | ****   |
|                      | 1125.488 | ****** |
|                      | 1147.914 | ****** |
|                      | 1170.340 | ****** |

```
|****
                 1192.766
                           |*****
                 1215.191
N = 200
                           |***
                 1237.617
Mean = 1163.675
                 1260.043
S. e. = 3.370
                 1282.468
                           |**
                 1304.894
                 1327.320
                 1349.746
                 1372.171
                 1394.597
                -913.194
                -709.533
                -505.872
                -302.212
                          |*****
                          |*****
                 -98.551
                 105.110
                          |*****
                 308.771
                          |**********
N = 200
                          |*****
                 512.432
Mean = 277.690
                          |*****
                 716.093
S. e. = 30.009
                          |***
                 919.754
                          |***
                1123.415
                1327.076
                1530.737
                1734.398
                1938.059
                         |**
                -12.696
                         |***
                 53.389
                         |*****
                119.475
                         |**********
                185.561
                         |********
                251.647
                         |****************
                317.733
                383.819
                         |*********
N = 200
                449.905
                         |******
Mean = 304.509
                         |****
                515.991
S. e. = 10.199
                         |**
                582.077
                         |***
                648.163
                         |*
                714.248
                780.334
```

| 84                 | 6.420    |          |        |         |       |       |
|--------------------|----------|----------|--------|---------|-------|-------|
| 91                 | 2.506  * |          |        |         |       |       |
| Model              | NPAR     | CMIN     | <br>DF | P       | CMI   | N/DF  |
| Default model      | 95       | 1002.283 |        | .000    |       | 2.957 |
| Saturated model    | 434      | .000     |        | .000    |       | 2.731 |
| Independence model | 56       | 5559.469 |        | .000    | 1     | 4.708 |
| macpendence moder  | NFI      | RFI      | IFI    | TLI     | 1     | 7.700 |
| Model              | Delta1   |          |        | rho2    | CFI   |       |
| Default model      | .820     | .799     | .873   | .857    | .872  | 1     |
| Saturated model    | 1.000    |          | .000   |         | 1.000 |       |
| Independence model | .000     | .000     | .000   | .000    | .000  |       |
| Model              | PRATIC   |          | PCFI   |         | .000  | _     |
| Default model      | .897     |          |        |         |       |       |
| Saturated model    | .000     |          | .000   |         |       |       |
| Independence model | 1.000    |          | .000   |         |       |       |
| Model              | NCI      |          |        | HI 90   | 7     |       |
| Default model      | 663.283  |          |        | 762.061 |       |       |
| Saturated model    | .000     |          | 000    | .000    |       |       |
| Independence model | 5181.469 |          |        | 125.753 |       |       |
| Model              | FMIN     | F0       | LO 90  | HIS     | 90    |       |
| Default model      | 4.041    | 2.675    | 2.307  |         |       |       |
| Saturated model    | .000     | .000     | .000   |         |       |       |
| Independence model | 22.417   | 20.893   | 19.934 | 21.87   | 78    |       |
| Model              | RMSEA    | LO 90    | HI 90  | PCL     | OSE   |       |
| Default model      | .089     |          | .095   |         | .000  |       |
| Independence model | .235     | .230     | .241   |         | .000  |       |
| Model              | AIC      | C BO     | CC B   | IC CA   | AIC   |       |
| Default model      | 1192.283 |          |        |         |       |       |
| Saturated model    | 868.000  | 982.9    | 941    |         |       |       |
| Independence model | 5671.469 | 5686.3   | 800    |         |       |       |
| Model              | ECVI     | LO 90    | HI 90  | MEC     | CVI   |       |
| Default model      | 4.808    | 4.440    | 5.206  |         | 909   |       |
| Saturated model    | 3.500    | 3.500    | 3.500  |         | 963   |       |
| Independence model | 22.869   | 21.910   | 23.854 | 22.9    | 929   |       |
|                    | HOELT    | ER HOE   | ELTER  |         |       |       |
| Model              |          | .05      | .01    |         |       |       |
| Default model      |          | 95       | 100    |         |       |       |
| Independence model |          | 19       | 20     |         |       |       |

Minimization: .055 Miscellaneous: .985 Bootstrap: .801 Total: 1.841

# **BOOTSTRAP STANDARD ERRORS**

| Parameter |     | SE   | SE-SE | Mean | Bias | SE-Bias |
|-----------|-----|------|-------|------|------|---------|
| OGC <     | LDS | .118 | .006  | .227 | 003  | .008    |
| OGC <     | IC  | .133 | .007  | .119 | 002  | .009    |
| OGC <     | IM  | .098 | .005  | .394 | .005 | .007    |
| OGC <     | EM  | .078 | .004  | .293 | .000 | .005    |
| LDS1 <    | LDS | .043 | .002  | .773 | 005  | .003    |
| LDS2 <    | LDS | .064 | .003  | .695 | 007  | .004    |
| LDS3 <    | LDS | .042 | .002  | .779 | 001  | .003    |
| LDS4 <    | LDS | .035 | .002  | .795 | 005  | .002    |
| LDS5 <    | LDS | .034 | .002  | .819 | 003  | .002    |
| LDS6 <    | LDS | .040 | .002  | .806 | 007  | .003    |
| LDS7 <    | LDS | .041 | .002  | .749 | 005  | .003    |
| LDS8 <    | LDS | .046 | .002  | .742 | .000 | .003    |
| LDS9 <    | LDS | .044 | .002  | .674 | 003  | .003    |
| IC01 <    | IC  | .051 | .003  | .763 | 006  | .004    |
| IC02 <    | IC  | .038 | .002  | .784 | 004  | .003    |
| IC03 <    | IC  | .027 | .001  | .897 | .003 | .002    |
| IC04 <    | IC  | .038 | .002  | .827 | 004  | .003    |
| IM01 <    | IM  | .060 | .003  | .638 | 006  | .004    |
| IM02 <    | IM  | .064 | .003  | .668 | 006  | .005    |
| IM03 <    | IM  | .038 | .002  | .849 | .001 | .003    |
| IM04 <    | IM  | .035 | .002  | .875 | 004  | .002    |
| EM01 <    | EM  | .078 | .004  | .650 | 004  | .006    |
| EM02 <    | EM  | .040 | .002  | .874 | 004  | .003    |
| EM03 <    | EM  | .046 | .002  | .812 | 007  | .003    |
| EM04 <    | EM  | .099 | .005  | .533 | 008  | .007    |
| OGC1 <    | OGC | .027 | .001  | .815 | 001  | .002    |
| OGC2 <    | OGC | .035 | .002  | .816 | 005  | .002    |
| OGC3 <    | OGC | .033 | .002  | .817 | 008  | .002    |
| OGC4 <    | OGC | .035 | .002  | .825 | 005  | .002    |
| OGC5 <    | OGC | .035 | .002  | .831 | 003  | .002    |
| OGC6 <    | OGC | .071 | .004  | .739 | 010  | .005    |
| OGC7 <    | OGC | .049 | .002  | .649 | .000 | .003    |

# APPENDIX 6 – SUPPLEMENT

# **Descriptives**

[DataSet1] D:\Dropbox\D Drive\LY DAN THANH\NGHIÊN CÚU SINH\PHASE 6-AFTER BLINDREVIEW\Blind Review-Round 2-PB3-L3\Raw-Data-spss\_PB3.sav

**Descriptive Statistics** 

| Descriptive Statistics |     |         |         |      |                |  |  |  |  |
|------------------------|-----|---------|---------|------|----------------|--|--|--|--|
|                        | N   | Minimum | Maximum | Mean | Std. Deviation |  |  |  |  |
| OGC1                   | 249 | 1       | 5       | 3.74 | .856           |  |  |  |  |
| OGC2                   | 249 | 1       | 5       | 3.68 | .857           |  |  |  |  |
| OGC3                   | 249 | 1       | 5       | 3.90 | .792           |  |  |  |  |
| OGC4                   | 249 | 1       | 5       | 3.96 | .756           |  |  |  |  |
| OGC5                   | 249 | 1       | 5       | 3.85 | .804           |  |  |  |  |
| OGC6                   | 249 | 1       | 5       | 3.82 | .778           |  |  |  |  |
| OGC7                   | 249 | 1       | 5       | 3.41 | .976           |  |  |  |  |
| LDS2                   | 249 | 1       | 5       | 3.88 | .882           |  |  |  |  |
| LDS3                   | 249 | 1       | 5       | 3.87 | .899           |  |  |  |  |
| LDS4                   | 249 | 1       | 5       | 3.90 | .821           |  |  |  |  |
| LDS5                   | 249 | 1       | 5       | 4.03 | .815           |  |  |  |  |
| LDS6                   | 249 | 1       | 5       | 4.16 | .770           |  |  |  |  |
| LDS7                   | 249 | 1       | 5       | 3.86 | .828           |  |  |  |  |
| LDS8                   | 249 | 1       | 5       | 4.04 | .756           |  |  |  |  |
| MET01                  | 249 | 1       | 5       | 3.75 | .815           |  |  |  |  |
| MET02                  | 249 | 1       | 5       | 3.76 | .835           |  |  |  |  |
| MET03                  | 249 | 1       | 5       | 3.57 | .863           |  |  |  |  |
| MET05                  | 249 | 1       | 5       | 3.63 | .893           |  |  |  |  |
| MET06                  | 249 | 1       | 5       | 3.73 | .855           |  |  |  |  |
| JOB1                   | 249 | 1       | 5       | 3.69 | .727           |  |  |  |  |
| JOB2                   | 249 | 1       | 5       | 3.61 | .770           |  |  |  |  |
| JOB3                   | 249 | 1       | 5       | 3.59 | .783           |  |  |  |  |
| JOB4                   | 249 | 1       | 5       | 3.69 | .781           |  |  |  |  |
| Valid N (listwise)     | 249 |         |         |      |                |  |  |  |  |

# **Factor Analysis**

#### KMO and Bartlett's Test

| Kaiser-Meyer-Olkin Measure    | .927     |      |
|-------------------------------|----------|------|
| Bartlett's Test of Sphericity | 2656.934 |      |
|                               | df       | 120  |
|                               | Sig.     | .000 |

Communalities

|       | Initial | Extraction |
|-------|---------|------------|
| LDS2  | 1.000   | .551       |
| LDS3  | 1.000   | .645       |
| LDS4  | 1.000   | .714       |
| LDS5  | 1.000   | .756       |
| LDS6  | 1.000   | .749       |
| LDS7  | 1.000   | .636       |
| LDS8  | 1.000   | .603       |
| MET01 | 1.000   | .701       |
| MET02 | 1.000   | .721       |
| MET03 | 1.000   | .734       |
| MET05 | 1.000   | .669       |
| MET06 | 1.000   | .642       |
| JOB1  | 1.000   | .743       |
| JOB2  | 1.000   | .772       |
| JOB3  | 1.000   | .665       |
| JOB4  | 1.000   | .818       |

Extraction Method: Principal

Component Analysis.

**Total Variance Explained** 

| -         | l otal variance Explained |                  |            |        |              |            |        |           |            |
|-----------|---------------------------|------------------|------------|--------|--------------|------------|--------|-----------|------------|
|           |                           |                  |            | Extrac | tion Sums of | Squared    | Rotati | on Sums o | f Squared  |
|           |                           | Initial Eigenval | ues        |        | Loadings     |            |        | Loading   | IS         |
|           |                           | % of             | Cumulative |        | % of         | Cumulative |        | % of      | Cumulative |
| Component | Total                     | Variance         | %          | Total  | Variance     | %          | Total  | Variance  | %          |
| 1         | 8.328                     | 52.052           | 52.052     | 8.328  | 52.052       | 52.052     | 4.467  | 27.919    | 27.919     |
| 2         | 1.686                     | 10.535           | 62.587     | 1.686  | 10.535       | 62.587     | 3.423  | 21.394    | 49.313     |
| 3         | 1.106                     | 6.915            | 69.502     | 1.106  | 6.915        | 69.502     | 3.230  | 20.188    | 69.502     |
| 4         | .629                      | 3.934            | 73.435     |        |              |            |        |           |            |
| 5         | .591                      | 3.692            | 77.127     |        |              |            |        |           |            |
| 6         | .516                      | 3.224            | 80.351     |        |              |            |        |           |            |
| 7         | .486                      | 3.040            | 83.391     |        |              |            |        |           |            |
| 8         | .464                      | 2.903            | 86.294     |        |              |            |        |           |            |
| 9         | .372                      | 2.327            | 88.621     |        |              |            |        |           |            |
| 10        | .347                      | 2.168            | 90.789     |        |              |            |        |           |            |
| 11        | .311                      | 1.946            | 92.735     |        |              |            |        |           |            |
| 12        | .298                      | 1.861            | 94.596     |        |              |            |        |           |            |
| 13        | .248                      | 1.549            | 96.145     |        |              |            |        |           |            |
| 14        | .244                      | 1.525            | 97.670     |        |              |            |        |           |            |

|  | 15 | .189 | 1.181 | 98.851  |  |  |  |
|--|----|------|-------|---------|--|--|--|
|  | 16 | .184 | 1.149 | 100.000 |  |  |  |

**Component Matrix**<sup>a</sup>

|       | Component |      |   |  |  |  |  |
|-------|-----------|------|---|--|--|--|--|
|       | 1         | 2    | 3 |  |  |  |  |
| LDS6  | .789      |      |   |  |  |  |  |
| LDS4  | .773      |      |   |  |  |  |  |
| LDS3  | .766      |      |   |  |  |  |  |
| MET06 | .764      |      |   |  |  |  |  |
| LDS5  | .755      |      |   |  |  |  |  |
| LDS8  | .747      |      |   |  |  |  |  |
| MET03 | .743      |      |   |  |  |  |  |
| MET01 | .735      |      |   |  |  |  |  |
| MET02 | .733      |      |   |  |  |  |  |
| LDS7  | .728      |      |   |  |  |  |  |
| JOB4  | .708      | .551 |   |  |  |  |  |
| MET05 | .701      |      |   |  |  |  |  |
| LDS2  | .677      |      |   |  |  |  |  |
| JOB2  | .651      | .587 |   |  |  |  |  |
| JOB3  | .625      | .524 |   |  |  |  |  |
| JOB1  | .620      | .596 |   |  |  |  |  |

Extraction Method: Principal Component Analysis.

**Rotated Component Matrix**<sup>a</sup>

|       | Component |      |   |  |  |  |
|-------|-----------|------|---|--|--|--|
|       | 1         | 2    | 3 |  |  |  |
| LDS5  | .826      |      |   |  |  |  |
| LDS6  | .791      |      |   |  |  |  |
| LDS4  | .758      |      |   |  |  |  |
| LDS7  | .705      |      |   |  |  |  |
| LDS3  | .677      |      |   |  |  |  |
| LDS2  | .670      |      |   |  |  |  |
| LDS8  | .657      |      |   |  |  |  |
| MET03 |           | .769 |   |  |  |  |
| MET02 |           | .765 |   |  |  |  |
| MET01 |           | .736 |   |  |  |  |

a. 3 components extracted.

|       | 1    |      |
|-------|------|------|
| MET05 | .736 |      |
| MET06 | .625 |      |
| JOB4  |      | .834 |
| JOB2  |      | .830 |
| JOB1  |      | .824 |
| JOB3  |      | .759 |

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

**Component Transformation Matrix** 

| Component | 1    | 2    | 3    |
|-----------|------|------|------|
| 1         | .670 | .564 | .484 |
| 2         | 458  | 199  | .866 |
| 3         | 585  | .802 | 125  |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

#### FACTOR

/VARIABLES OGC1 OGC2 OGC3 OGC4 OGC5 OGC6 OGC7 /MISSING LISTWISE /ANALYSIS OGC1 OGC2 OGC3 OGC4 OGC5 OGC6 OGC7 /PRINT INITIAL KMO EXTRACTION ROTATION /FORMAT SORT BLANK(.50) /CRITERIA FACTORS(1) ITERATE(25) /EXTRACTION PC /CRITERIA ITERATE(25) /ROTATION VARIMAX /METHOD=CORRELATION.

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure o  | .887               |          |
|-------------------------------|--------------------|----------|
| Bartlett's Test of Sphericity | Approx. Chi-Square | 1201.707 |
|                               | Df                 | 21       |
|                               | Sig.               | .000     |

#### Communalities

|      | Initial | Extraction |
|------|---------|------------|
| OGC1 | 1.000   | .723       |
| OGC2 | 1.000   | .719       |
| OGC3 | 1.000   | .720       |
| OGC4 | 1.000   | .722       |

| OGC5 | 1.000 | .741 |
|------|-------|------|
| OGC6 | 1.000 | .623 |
| OGC7 | 1.000 | .489 |

Extraction Method: Principal

Component Analysis.

**Total Variance Explained** 

|           |       | Initial Eigenvalu | es           | Extraction Sums of Squared Loadings |               |              |  |  |
|-----------|-------|-------------------|--------------|-------------------------------------|---------------|--------------|--|--|
| Component | Total | % of Variance     | Cumulative % | Total                               | % of Variance | Cumulative % |  |  |
| 1         | 4.738 | 67.681            | 67.681       | 4.738                               | 67.681        | 67.681       |  |  |
| 2         | .625  | 8.927             | 76.608       |                                     |               |              |  |  |
| 3         | .542  | 7.747             | 84.355       |                                     |               |              |  |  |
| 4         | .382  | 5.451             | 89.807       |                                     |               |              |  |  |
| 5         | .330  | 4.710             | 94.517       |                                     |               |              |  |  |
| 6         | .208  | 2.976             | 97.493       |                                     |               |              |  |  |
| 7         | .176  | 2.507             | 100.000      |                                     |               |              |  |  |

Extraction Method: Principal Component Analysis.

**Component Matrix**<sup>a</sup>

|      | Component |
|------|-----------|
|      | 1         |
| OGC5 | .861      |
| OGC1 | .850      |
| OGC4 | .850      |
| OGC3 | .848      |
| OGC2 | .848      |
| OGC6 | .790      |
| OGC7 | .699      |

Extraction Method:

Principal Component

Analysis.

a. 1 components extracted.

Rotated

Component

Matrixa

#### a. Only one

component

was

extracted.

The solution

cannot be

rotated.

#### **CFA**

Number of variables in your model: 50 Number of observed variables: 23 Number of unobserved variables: 27 Number of exogenous variables: 27 Number of endogenous variables: 23

|           | Weights | Covariances | Variances | Means | Intercepts | Total |
|-----------|---------|-------------|-----------|-------|------------|-------|
| Fixed     | 27      | 0           | 0         | 0     | 0          | 27    |
| Labeled   | 0       | 0           | 0         | 0     | 0          | 0     |
| Unlabeled | 19      | 6           | 27        | 0     | 0          | 52    |
| Total     | 46      | 6           | 27        | 0     | 0          | 79    |

#### **Notes for Model (Default model)**

#### Computation of degrees of freedom (Default model)

Number of distinct sample moments: 276 Number of distinct parameters to be estimated: 52 Degrees of freedom (276 - 52): 224

### Result (Default model)

Minimum was achieved

Chi-square = 505.279

Degrees of freedom = 224

Probability level = .000

|       | • |     | Estimate | S.E. | C.R.   | P   | Label |
|-------|---|-----|----------|------|--------|-----|-------|
| LDS5  | < | LDS | 1.000    |      |        |     |       |
| LDS6  | < | LDS | .955     | .061 | 15.663 | *** |       |
| LDS4  | < | LDS | .978     | .066 | 14.738 | *** |       |
| LDS7  | < | LDS | .926     | .069 | 13.464 | *** |       |
| LDS3  | < | LDS | 1.026    | .074 | 13.860 | *** |       |
| LDS2  | < | LDS | .905     | .075 | 11.981 | *** |       |
| LDS8  | < | LDS | .838     | .063 | 13.309 | *** |       |
| MET03 | < | MET | 1.000    |      |        |     |       |
| MET02 | < | MET | .980     | .071 | 13.734 | *** |       |

|           |     | Estimate | S.E. | C.R    | . P   | Label |
|-----------|-----|----------|------|--------|-------|-------|
| MET01 < N | MET | .946     | .070 | 13.562 | 2 *** |       |
| MET05 < N | MET | .959     | .078 | 12.295 | 5 *** |       |
| MET06 < N | MET | .965     | .074 | 13.082 | 2 *** |       |
| JOB4 < J  | OB  | 1.000    |      |        |       |       |
| JOB2 < J  | OB  | .905     | .054 | 16.840 | ) *** |       |
| JOB1 < J  | OB  | .841     | .051 | 16.364 | 1 *** |       |
| JOB3 < J  | OB  | .856     | .058 | 14.835 | 5 *** |       |
| OGC5 < (  | OGC | 1.000    |      |        |       |       |
| OGC1 < (  | OGC | 1.062    | .068 | 15.659 | ) *** |       |
| OGC4 < (  | OGC | .939     | .060 | 15.677 | 7 *** |       |
| OGC3 < (  | OGC | .978     | .063 | 15.535 | 5 *** |       |
|           | OGC | 1.064    | .068 | 15.653 | 3 *** |       |
| OGC6 < (  | OGC | .879     | .064 | 13.640 | ) *** |       |
| OGC7 < (  | OGC | .961     | .085 | 11.341 | ***   |       |
|           |     | Estimate |      |        |       |       |
| LDS5 < I  | LDS | .825     |      |        |       |       |
| LDS6 < I  | LDS | .835     |      |        |       |       |
| LDS4 < I  | LDS | .801     |      |        |       |       |
| LDS7 < I  | LDS | .752     |      |        |       |       |
| LDS3 < I  | LDS | .768     |      |        |       |       |
| LDS2 < I  | LDS | .689     |      |        |       |       |
| LDS8 < I  | LDS | .746     |      |        |       |       |
| MET03 < N | MET | .794     |      |        |       |       |
| MET02 < N | MET | .804     |      |        |       |       |
| MET01 < N | MET | .796     |      |        |       |       |
| MET05 < N | MET | .736     |      |        |       |       |
| MET06 < N | MET | .774     |      |        |       |       |
| JOB4 < J  | OB  | .891     |      |        |       |       |
| JOB2 < J  | OB  | .818     |      |        |       |       |
| JOB1 < J  | OB  | .805     |      |        |       |       |
| JOB3 < J  | OB  | .760     |      |        |       |       |
| OGC5 < (  | OGC | .827     |      |        |       |       |
| OGC1 < (  | OGC | .825     |      |        |       |       |
| OGC4 < (  | OGC | .825     |      |        |       |       |
| OGC3 < (  | OGC | .820     |      |        |       |       |
| OGC2 < (  | OGC | .825     |      |        |       |       |
| OGC6 < (  | OGC | .751     |      |        |       |       |
| OGC7 < (  | OGC | .654     |      |        |       |       |
|           |     | Estimate | S.E. | C.R.   | P I   | Label |
| LDS <> MI | ET  | .366     | .046 | 7.991  | ***   |       |
| LDS <> JO | В   | .283     | .040 | 7.132  | ***   |       |

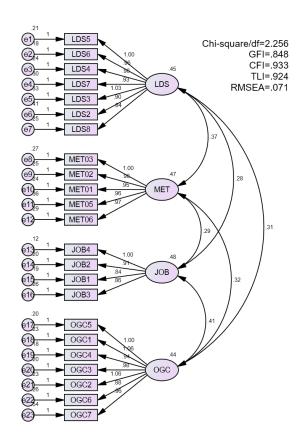
|        |        | Est | imate | S.E.  | C.I  | R.         | P     | Label |
|--------|--------|-----|-------|-------|------|------------|-------|-------|
| LDS <> | OGC    |     | .311  | .041  | 7.64 | 12         | ***   |       |
| MET <> | JOB    |     | .291  | .042  | 7.02 | 21         | ***   |       |
| MET <> | OGC    |     | .318  | .042  | 7.49 | 90         | ***   |       |
| JOB <> | OGC    |     | .409  | .046  | 8.92 | 26         | ***   |       |
|        |        | Est | imate |       |      |            |       |       |
| LDS <> | MET    |     | .798  |       |      |            |       |       |
| LDS <> | JOB    |     | .608  |       |      |            |       |       |
| LDS <> | OGC    |     | .699  |       |      |            |       |       |
| MET <> | JOB    |     | .613  |       |      |            |       |       |
| MET <> | OGC    |     | .701  |       |      |            |       |       |
| JOB <> | OGC    |     | .887  |       |      |            |       |       |
|        | Estima | ıte | S.E.  | C.F   | ₹.   | P          | Label |       |
| LDS    | .4:    | 51  | .058  | 7.80  | 4 ** | **         |       |       |
| MET    | .40    | 68  | .064  | 7.28  | 1 ** | **         |       |       |
| JOB    | .43    | 82  | .055  | 8.79  | 2 ** | **         |       |       |
| OGC    | .44    | 40  | .056  | 7.87  | 8 ** | **         |       |       |
| e1     | .2     | 11  | .023  | 9.25  | 9 ** | **         |       |       |
| e2     | .1′    | 79  | .020  | 9.10  | 8 ** | **         |       |       |
| e3     | .24    | 41  | .025  | 9.56  | 0 ** | **         |       |       |
| e4     | .29    | 97  | .030  | 9.99  | 6 ** | **         |       |       |
| e5     | .33    | 31  | .034  | 9.87  | 8 ** | **         |       |       |
| e6     | .40    | 07  | .039  | 10.34 | 4 ** | <b>*</b> * |       |       |
| e7     | .23    | 53  | .025  | 10.03 | 9 ** | **         |       |       |
| e8     | .2′    | 75  | .030  | 9.14  | 9 ** | **         |       |       |
| e9     | .24    | 45  | .027  | 8.99  | 8 ** | **         |       |       |
| e10    | .24    | 42  | .027  | 9.11  | 6 ** | **         |       |       |
| e11    | .30    | 64  | .037  | 9.76  | 6 ** | **         |       |       |
| e12    | .29    | 92  | .031  | 9.40  | 1 ** | <b>*</b> * |       |       |
| e13    | .12    | 25  | .017  | 7.35  | 2 ** | <b>*</b> * |       |       |
| e14    | .19    | 95  | .021  | 9.16  | 8 ** | <b>*</b> * |       |       |
| e15    | .13    | 85  | .020  | 9.35  | 0 ** | <b>*</b> * |       |       |
| e16    | .23    | 58  | .026  | 9.82  | 0 ** | <b>*</b> * |       |       |
| e17    | .20    | 04  | .021  | 9.63  | 6 ** | **         |       |       |
| e18    | .23    | 33  | .024  | 9.66  | 0 ** | **         |       |       |
| e19    | .13    | 81  | .019  | 9.65  | 3 ** | **         |       |       |
| e20    | .20    | 04  | .021  | 9.70  | 7 ** | **         |       |       |
| e21    | .23    | 34  | .024  | 9.66  | 2 ** | **         |       |       |
| e22    | .20    | 63  | .026  | 10.24 | 4 ** | **         |       |       |
| e23    | .54    | 43  | .051  | 10.62 | ** 0 | **         |       |       |

|                    |             | Estimat | te    |      |          |               |         |      |     |       |
|--------------------|-------------|---------|-------|------|----------|---------------|---------|------|-----|-------|
| OGC7               |             | .42     | 8     |      |          |               |         |      |     |       |
| OGC6               |             | .56     | 64    |      |          |               |         |      |     |       |
| OGC2               |             | .68     | 0     |      |          |               |         |      |     |       |
| OGC3               |             | .67     | 73    |      |          |               |         |      |     |       |
| OGC4               |             | .68     | 81    |      |          |               |         |      |     |       |
| OGC1               |             | .68     | .680  |      |          |               |         |      |     |       |
| OGC5               |             | .68     | 4     |      |          |               |         |      |     |       |
| JOB3               |             | .57     | 8     |      |          |               |         |      |     |       |
| JOB1               |             | .648    |       |      |          |               |         |      |     |       |
| JOB2               |             | .669    |       |      |          |               |         |      |     |       |
| JOB4               |             | .79     | 94    |      |          |               |         |      |     |       |
| MET06              |             | .59     | .599  |      |          |               |         |      |     |       |
| MET05              |             | .542    |       |      |          |               |         |      |     |       |
| MET01              |             | .63     | 4     |      |          |               |         |      |     |       |
| MET02              |             | .64     | 7     |      |          |               |         |      |     |       |
| MET03              |             | .630    |       |      |          |               |         |      |     |       |
| LDS8               |             | .55     | 56    |      |          |               |         |      |     |       |
| LDS2               |             | .47     | .475  |      |          |               |         |      |     |       |
| LDS3               |             | .58     | 589   |      |          |               |         |      |     |       |
| LDS7               |             | .565    |       |      |          |               |         |      |     |       |
| LDS4               |             | .64     | 2     |      |          |               |         |      |     |       |
| LDS6               |             | .69     | 7     |      |          |               |         |      |     |       |
| LDS5               |             | .68     | 1     |      |          |               |         |      |     |       |
| N                  |             | M.      | I. Pa | ır ( | Change   |               |         |      |     |       |
| e18 <> e21         |             |         |       |      | .091     |               |         |      |     |       |
| e18 <> e19         |             | 19.49   | 1     |      | 065      |               |         |      |     |       |
| e9 <> e10          |             | 24.558  |       |      | .090     |               |         |      |     |       |
|                    | M.I. Par C  |         | nange |      |          |               |         |      |     |       |
|                    | M.I. Par Cl |         |       |      |          |               |         |      |     |       |
| Model              |             |         | NPA   | R    | CM       | IIN           | DF      | P    | CMI | N/DF  |
| Default model      |             |         | 5     | 2    | 505.279  |               | 224     | .000 |     | 2.256 |
| Saturated model    |             |         | 276   |      | ).       | 000 0         |         |      |     |       |
| Independence model |             |         | 23    |      | 4422.816 |               | 253     | .000 | 1′  | 7.481 |
| Model              |             |         | RMR   |      | GFI AG   |               | FI PGFI |      |     |       |
| Default model      |             |         | .030  |      | .848     | .813          |         | .688 |     |       |
| Saturated model    |             |         | .000  | )    | 1.000    |               |         |      |     |       |
| Independence model |             |         | .322  | ,    | .153     | .076          |         | .141 |     |       |
| Model              |             |         | NF    | I    | RFI      | IFI<br>Delta2 |         | TLI  | CEI | 1     |
| Model              |             |         | Delta | 1    | rho1     |               |         | rho2 | CFI |       |
| D C 1: 11          |             |         | 0.0   | _    | 071      |               | 000     | 00.4 | 022 |       |

.886

.871

.933


.924

.933

Default model

| Model              | NFI<br>Delta1 | RFI<br>rho1 D | IFI<br>Delta2 | TLI<br>rho2 | CFI  |       |
|--------------------|---------------|---------------|---------------|-------------|------|-------|
| Saturated model    | 1.000         |               | 1.000         |             | .000 |       |
| Independence model |               | .000          | .000          | .000        | .000 |       |
| Model              | PRATIO        | PNFI          | PCFI          |             |      | 1     |
| Default model      | .885          | .784          | .826          |             |      |       |
| Saturated model    | .000          | .000          | .000          |             |      |       |
| Independence model | 1.000         | .000          | .000          |             |      |       |
| Model              | NCP           | LO            | 90            | HI 90       |      |       |
| Default model      | 281.279       | 219.8         | 365 <i>i</i>  | 350.419     |      |       |
| Saturated model    | .000          | ).            | 000           | .000        |      |       |
| Independence model | 4169.816      | 3957.         | 743 43        | 389.168     |      |       |
| Model              | FMIN          | F0            | LO 90         | HI 9        | 0    |       |
| Default model      | 2.037         | 1.134         | .887          | 1.41        | 3    |       |
| Saturated model    | .000          | .000          | .000          | .00         | 0    |       |
| Independence model | 17.834        | 16.814        | 15.959        | 17.69       | 8    |       |
| Model              | RMSEA         | LO 90         | HI 90         | PCLO        | OSE  |       |
| Default model      | .071          | .063          | .079          | ) .         | .000 |       |
| Independence model | .258          | .251          | .264          | ١.          | .000 |       |
| Model              | AIC           | В             | CC            | BIC         | (    | CAIC  |
| Default model      | 609.279       | 620.4         | 422 <i>′</i>  | 792.187     | 84   | 4.187 |
| Saturated model    | 552.000       | 611.          | 143 1:        | 522.817     | 179  | 8.817 |
| Independence model | 4468.816      | 4473.         | 745 43        | 549.718     | 457  | 2.718 |
| Model              | ECVI          | LO 90         | HI 90         | MEC         | VI   |       |
| Default model      | 2.457         | 2.209         | 2.736         | 2.5         | 02   |       |
| Saturated model    | 2.226         | 2.226         | 2.226         | 2.4         | 64   |       |
| Independence model | 18.019        | 17.164        | 18.904        | 18.0        | 39   |       |
| Model              | HOELTE<br>).  | R HO          | ELTER<br>.01  |             |      |       |
| Default model      | 12            | 28            | 136           |             |      |       |
| Independence model | 1             | 17            | 18            |             |      |       |
| Minimization 024   |               |               |               | _           |      |       |

Minimization: .024 Miscellaneous: .689 Bootstrap: .000 Total: .713



# **SEM**

Number of variables in your model: 51
Number of observed variables: 23
Number of unobserved variables: 28
Number of exogenous variables: 27
Number of endogenous variables: 24

|           | Weights | Covariances | Variances | Means | Intercepts | Total |
|-----------|---------|-------------|-----------|-------|------------|-------|
| Fixed     | 28      | 0           | 0         | 0     | 0          | 28    |
| Labeled   | 0       | 0           | 0         | 0     | 0          | 0     |
| Unlabeled | 22      | 3           | 27        | 0     | 0          | 52    |
| Total     | 50      | 3           | 27        | 0     | 0          | 80    |

# **Notes for Model (Default model)**

# Computation of degrees of freedom (Default model)

Number of distinct sample moments: 276 Number of distinct parameters to be estimated: 52 Degrees of freedom (276 - 52): 224

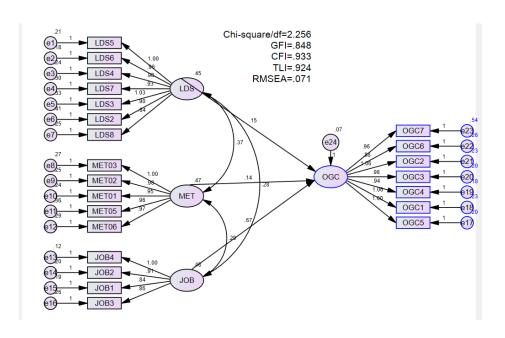
# **Result (Default model)**

Minimum was achieved Chi-square = 505.279 Degrees of freedom = 224 Probability level = .000

| TOUGUII | ity it v | <u>C1 — .00</u> | · ·      |      |        |      |       |
|---------|----------|-----------------|----------|------|--------|------|-------|
|         |          |                 | Estimate | S.E. | C.R.   | P    | Label |
| OGC     | <        | LDS             | .153     | .072 | 2.129  | .033 |       |
| OGC     | <        | MET             | .142     | .072 | 1.958  | .050 |       |
| OGC     | <        | JOB             | .672     | .060 | 11.231 | ***  |       |
| LDS5    | <        | LDS             | 1.000    |      |        |      |       |
| LDS6    | <        | LDS             | .955     | .061 | 15.663 | ***  |       |
| LDS4    | <        | LDS             | .978     | .066 | 14.738 | ***  |       |
| LDS7    | <        | LDS             | .926     | .069 | 13.464 | ***  |       |
| LDS3    | <        | LDS             | 1.026    | .074 | 13.860 | ***  |       |
| LDS2    | <        | LDS             | .905     | .075 | 11.981 | ***  |       |
| LDS8    | <        | LDS             | .838     | .063 | 13.309 | ***  |       |
| MET03   | <        | MET             | 1.000    |      |        |      |       |
| MET02   | <        | MET             | .980     | .071 | 13.734 | ***  |       |
| MET01   | <        | MET             | .946     | .070 | 13.562 | ***  |       |
| MET05   | <        | MET             | .959     | .078 | 12.295 | ***  |       |
| MET06   | <        | MET             | .965     | .074 | 13.082 | ***  |       |
| JOB4    | <        | JOB             | 1.000    |      |        |      |       |
| JOB2    | <        | JOB             | .905     | .054 | 16.840 | ***  |       |
| JOB1    | <        | JOB             | .841     | .051 | 16.364 | ***  |       |
| JOB3    | <        | JOB             | .856     | .058 | 14.835 | ***  |       |
| OGC5    | <        | OGC             | 1.000    |      |        |      |       |
| OGC1    | <        | OGC             | 1.062    | .068 | 15.659 | ***  |       |
| OGC4    | <        | OGC             | .939     | .060 | 15.677 | ***  |       |
| OGC3    | <        | OGC             | .978     | .063 | 15.535 | ***  |       |
| OGC2    | <        | OGC             | 1.064    | .068 | 15.653 | ***  |       |
| OGC6    | <        | OGC             | .879     | .064 | 13.640 | ***  |       |
| OGC7    | <        | OGC             | .961     | .085 | 11.341 | ***  |       |
|         |          |                 | Estimate |      |        |      |       |
| OGC     | <        | LDS             | .155     |      |        |      |       |
| OGC     | <        | MET             | .146     |      |        |      |       |
| OGC     | <        | JOB             | .704     |      |        |      |       |
| LDS5    | <        | LDS             | .825     |      |        |      |       |
| LDS6    | <        | LDS             | .835     |      |        |      |       |
| LDS4    | <        | LDS             | .801     |      |        |      |       |
| LDS7    | <        | LDS             | .752     |      |        |      |       |
| LDS3    | <        | LDS             | .768     |      |        |      |       |

|         |            |          | Estimate | ,      |       |       |       |
|---------|------------|----------|----------|--------|-------|-------|-------|
| LDS2 <  | - LDS      | _        | .689     | _      |       |       |       |
| LDS8 <  |            |          | .746     |        |       |       |       |
| MET03 < |            | 7        | .794     |        |       |       |       |
| MET02 < | - МЕТ      |          | .804     |        |       |       |       |
| MET01 < | - МЕТ      |          | .796     |        |       |       |       |
| MET05 < | - МЕТ      | 7        | .736     | 5      |       |       |       |
| MET06 < | - МЕТ      | 7        | .774     | 1      |       |       |       |
| JOB4 <  | - JOB      |          | .891     | L      |       |       |       |
| JOB2 <  | - JOB      |          | .818     | 3      |       |       |       |
| JOB1 <  | - JOB      |          | .805     | 5      |       |       |       |
| JOB3 <  | - JOB      |          | .760     | )      |       |       |       |
| OGC5 <  | - OGC      | 1        | .827     | 7      |       |       |       |
| OGC1 <  | - OGC      | 3        | .825     | 5      |       |       |       |
| OGC4 <  | - OGC      | 7        | .825     | 5      |       |       |       |
| OGC3 <  | - OGC      | 7        | .820     | )      |       |       |       |
| OGC2 <  | - OGC      | 1        | .825     | 5      |       |       |       |
| OGC6 <  | - OGC      | 1        | .751     | 1      |       |       |       |
| OGC7 <  | - OGC      | 1        | .654     | 1      |       |       |       |
|         |            | Es       | timate   | S.E.   | C.R.  | P     | Label |
| LDS <>  | MET        |          | .366     | .046   | 7.991 | ***   |       |
| LDS <>  | JOB        |          | .283     | .040   | 7.132 | ***   |       |
| MET <>  | JOB        |          | .291     | .042   | 7.021 | ***   |       |
|         |            | Es       | timate   |        |       |       |       |
| LDS <>  | MET        |          | .798     |        |       |       |       |
| LDS <>  | JOB        |          | .608     |        |       |       |       |
| MET <>  | JOB        |          | .613     |        |       |       | =     |
|         | Estima     |          | S.E.     | C.R.   | P     | Label |       |
| LDS     |            | 51       | .058     | 7.804  | ***   |       |       |
| MET     |            | 68       | .064     | 7.281  | ***   |       |       |
| JOB     |            | 82       | .055     | 8.792  |       |       |       |
| e24     |            | 73       | .014     | 5.363  |       |       |       |
| e1      |            | 11       | .023     | 9.259  |       |       |       |
| e2      |            | 79       | .020     | 9.108  |       |       |       |
| e3      |            | 41       | .025     | 9.560  |       |       |       |
| e4      |            | 97<br>21 | .030     | 9.996  |       |       |       |
| e5      |            | 31       | .034     | 9.878  | ***   |       |       |
| e6      |            | 07<br>52 | .039     | 10.344 |       |       |       |
| e7      |            | 53<br>75 | .025     | 10.039 | ***   |       |       |
| e8      | . <i>1</i> | 17       | .030     | 9.149  | マママ   |       | 1     |
| e9      |            | 45       | .027     | 8.998  | ***   |       |       |

|     | Estimate | S.E. | C.R.   | P   | Label |
|-----|----------|------|--------|-----|-------|
| e10 | .242     | .027 | 9.116  | *** |       |
| e11 | .364     | .037 | 9.766  | *** |       |
| e12 | .292     | .031 | 9.401  | *** |       |
| e13 | .125     | .017 | 7.352  | *** |       |
| e14 | .195     | .021 | 9.168  | *** |       |
| e15 | .185     | .020 | 9.350  | *** |       |
| e16 | .258     | .026 | 9.820  | *** |       |
| e17 | .204     | .021 | 9.636  | *** |       |
| e18 | .233     | .024 | 9.660  | *** |       |
| e19 | .181     | .019 | 9.653  | *** |       |
| e20 | .204     | .021 | 9.707  | *** |       |
| e21 | .234     | .024 | 9.662  | *** |       |
| e22 | .263     | .026 | 10.244 | *** |       |
| e23 | .543     | .051 | 10.620 | *** |       |


|       | Estimate |
|-------|----------|
| OGC   | .835     |
| OGC7  | .428     |
| OGC6  | .564     |
| OGC2  | .680     |
| OGC3  | .673     |
| OGC4  | .681     |
| OGC1  | .680     |
| OGC5  | .684     |
| JOB3  | .578     |
| JOB1  | .648     |
| JOB2  | .669     |
| JOB4  | .794     |
| MET06 | .599     |
| MET05 | .542     |
| MET01 | .634     |
| MET02 | .647     |
| MET03 | .630     |
| LDS8  | .556     |
| LDS2  | .475     |
| LDS3  | .589     |
| LDS7  | .565     |
| LDS4  | .642     |
| LDS6  | .697     |
| LDS5  | .681     |

|            | M.I.   | Par Change |
|------------|--------|------------|
| e18 <> e21 | 29.356 | .091       |

|                     |          | M.I.    | Pa    | ar Change |       |       |                |       |       |       |         |           |              |
|---------------------|----------|---------|-------|-----------|-------|-------|----------------|-------|-------|-------|---------|-----------|--------------|
| e18 <>              | > e19    | 19.491  |       | 065       |       |       |                |       |       |       |         |           |              |
| e9 <>               | > e10    | 24.558  |       | .090      |       |       |                |       |       |       |         |           |              |
|                     | M.I.     | Par Cha | nge   |           | _     |       |                |       |       |       |         |           |              |
|                     | M.I.     | Par Cha | nge   |           |       |       |                |       |       |       |         |           |              |
| Iteratio            |          | Negati  | ve    | Conditio  | S     | malle | est            | D:    | amete |       |         | NTrie     |              |
| n                   |          | eigenva | lu    | n #       | eig   | genva | lu             | Di    | r     |       | F       | N I I I E | Ratio        |
|                     |          |         | es    | 11 //     |       |       | e              |       |       |       |         |           |              |
| 0                   | e        |         | 9     |           |       | -1.15 | 51             | 99    | 99.00 | 4235. | 01<br>4 | 0         | 9999.00<br>0 |
|                     |          |         |       |           |       |       |                |       | U     | 2169. |         |           | U            |
| 1                   | e        |         | 13    |           |       | 29    | 99             |       | 3.835 | 2109. | 0       | 19        | .272         |
|                     |          |         | •     |           |       | 1.0   |                |       | 1.201 | 1187. | -       | _         | 000          |
| 2                   | e        |         | 3     |           |       | 19    | <del>)</del> 6 |       | 1.204 |       | 0       | 5         | .929         |
| 3                   | e        |         | 1     |           |       | 24    | 10             |       | .805  | 764.4 | 41      | 5         | .864         |
| 4                   | e<br>*   |         | 0     | 252.499   |       |       |                |       | .717  | 561.6 | 80      | 5         | .928         |
| 5                   | e        |         | 0     | 236.195   |       |       |                |       | .780  | 536.0 | 88      | 2         | .000         |
| 6                   | e        |         | 0     | 142.259   |       |       |                |       | .258  | 508.2 | 29      | 1         | 1.120        |
| 7                   | e        |         | 0     | 111.323   |       |       |                |       | .072  | 505.4 | 74      | 1         | 1.144        |
| 8                   | e        |         | 0     | 111.908   |       |       |                |       | .021  | 505.2 | 81      | 1         | 1.058        |
| 9                   | e        |         | 0     | 112.434   |       |       |                |       | .002  | 505.2 | 79      | 1         | 1.006        |
| 10                  | e        |         | 0     | 112.439   |       |       |                |       | .000  | 505.2 | 79      | 1         | 1.000        |
| Model               |          | ]       | NPA   | R CN      | ΛIN   | DF    | ·              | P     | CM    | N/DF  |         |           |              |
| Default             | model    |         | 5     | 52 505.   | 279   | 224   | ٠.             | .000  |       | 2.256 |         |           |              |
| Saturate            | ed mode  | el      | 27    | 76 .      | 000   | 0     | )              |       |       |       |         |           |              |
| Indepen             | dence r  | nodel   | 2     | 23 4422.  | 816   | 253   |                | .000  | 1     | 7.481 |         |           |              |
| Model               |          | ]       | RMR   | R GFI     | AG    | FI    | PG             | FI    |       |       |         |           |              |
| Default             |          |         | .030  |           | .8    | 13    | .63            | 88    |       |       |         |           |              |
| Saturate            |          |         | .000  |           |       |       |                |       |       |       |         |           |              |
| Indepen             | dence r  | nodel   | .322  |           | .0    | 76    | .14            |       |       | 7     |         |           |              |
| Model               |          |         | NI    |           | _     | IFI   |                | LI    | CFI   |       |         |           |              |
| Default             | o d o l  |         | Delta |           |       | lta2  | rh             |       | 022   |       |         |           |              |
| Default<br>Saturate |          | .1      | .88   |           |       | 933   | .9.            | 24    | .933  |       |         |           |              |
| Indepen             |          |         | 1.00  |           |       | 000   | 0              | 00    | 1.000 |       |         |           |              |
| Model               | idence i |         | PRA   |           |       | PCFI  |                | 00    | .000  |       |         |           |              |
| Default             | model    |         |       |           | 84    | .826  | -              |       |       |       |         |           |              |
| Saturate            |          | .1      |       |           | 00    | .000  |                |       |       |       |         |           |              |
| Indepen             |          |         |       |           | 00    | .000  |                |       |       |       |         |           |              |
| Model               |          |         |       |           | LO 9  |       |                | HI 90 | )     |       |         |           |              |
| Default             | model    |         |       |           | 19.86 |       |                | ).419 |       |       |         |           |              |
|                     |          |         |       |           |       |       | 220            |       |       |       |         |           |              |

| Model              | NCP      | LO     | 90     | HI 90  |     |       |
|--------------------|----------|--------|--------|--------|-----|-------|
| Saturated model    | .000     | ).     | 000    | .000   |     |       |
| Independence model | 4169.816 | 3957.7 | 743 43 | 89.168 |     |       |
| Model              | FMIN     | F0     | LO 90  | HI 90  | )   |       |
| Default model      | 2.037    | 1.134  | .887   | 1.413  | 3   |       |
| Saturated model    | .000     | .000   | .000   | .000   | )   |       |
| Independence model | 17.834   | 16.814 | 15.959 | 17.698 | 3   |       |
| Model              | RMSEA    | LO 90  | HI 90  | PCLO   | SE  |       |
| Default model      | .071     | .063   | .079   | 0.     | 000 |       |
| Independence model | .258     | .251   | .264   | .0     | 000 |       |
| Model              | AIC      | В      | CC     | BIC    |     | CAIC  |
| Default model      | 609.279  | 620.4  | 122 7  | 92.187 | 84  | 4.187 |
| Saturated model    | 552.000  | 611.1  | 143 15 | 22.817 | 179 | 8.817 |
| Independence model | 4468.816 | 4473.7 | 745 45 | 49.718 | 457 | 2.718 |
| Model              | ECVI     | LO 90  | HI 90  | MECV   | /I  |       |
| Default model      | 2.457    | 2.209  | 2.736  | 2.50   | )2  |       |
| Saturated model    | 2.226    | 2.226  | 2.226  | 2.46   | 54  |       |
| Independence model | 18.019   | 17.164 | 18.904 | 18.03  | 9   |       |
| Model              | HOELTE   | R HOI  | ELTER  |        |     |       |
| MIOGEI             | ).       | )5     | .01    |        |     |       |
| Default model      | 12       | 28     | 136    |        |     |       |
| Independence model | 1        | 7      | 18     |        |     |       |

Minimization: .052 Miscellaneous: 1.492 Bootstrap: .000 Total: 1.544



# **Descriptives**

**Descriptive Statistics** 

|      | N   | Minimum | Maximum | Mean | Std. Deviation |
|------|-----|---------|---------|------|----------------|
| OI01 | 249 | 1       | 5       | 3.81 | .737           |
| OI02 | 249 | 1       | 5       | 3.84 | .812           |
| OI03 | 249 | 1       | 5       | 3.60 | .888           |
| OI04 | 249 | 1       | 5       | 3.62 | .922           |
| OI05 | 249 | 1       | 5       | 3.82 | .833           |
| OI06 | 249 | 1       | 5       | 3.71 | .905           |
| Ol07 | 249 | 1       | 5       | 3.99 | .868           |
| EV1  | 249 | 1       | 5       | 4.00 | .833           |
| EV2  | 249 | 1       | 5       | 3.73 | .784           |
| EV3  | 249 | 1       | 5       | 3.96 | .805           |
| EV4  | 249 | 1       | 5       | 4.00 | .854           |
| IM01 | 249 | 1       | 5       | 3.96 | .750           |
| IM03 | 249 | 1       | 5       | 3.87 | .769           |
| IM04 | 249 | 1       | 5       | 3.82 | .797           |
| POS1 | 249 | 1       | 5       | 3.79 | .770           |
| POS2 | 249 | 1       | 5       | 3.75 | .791           |
| POS4 | 249 | 1       | 5       | 3.78 | .775           |
| POS5 | 249 | 1       | 5       | 3.45 | .879           |
| POS6 | 249 | 1       | 5       | 3.49 | .907           |
| EM01 | 249 | 1       | 5       | 3.73 | .909           |
| EM04 | 249 | 1       | 5       | 3.71 | .911           |

| IM02               | 249 | 1 | 5 | 3.93 | .762 |
|--------------------|-----|---|---|------|------|
| OGC1               | 249 | 1 | 5 | 3.74 | .856 |
| OGC2               | 249 | 1 | 5 | 3.68 | .857 |
| OGC3               | 249 | 1 | 5 | 3.90 | .792 |
| OGC4               | 249 | 1 | 5 | 3.96 | .756 |
| OGC5               | 249 | 1 | 5 | 3.85 | .804 |
| OGC6               | 249 | 1 | 5 | 3.82 | .778 |
| OGC7               | 249 | 1 | 5 | 3.41 | .976 |
| Valid N (listwise) | 249 |   |   |      |      |

# **Factor Analysis**

# **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure o  | .930               |          |
|-------------------------------|--------------------|----------|
| Bartlett's Test of Sphericity | Approx. Chi-Square | 3789.035 |
|                               | df                 | 231      |
|                               | Sig.               | .000     |

# Communalities

|      | Initial | Extraction |
|------|---------|------------|
| OI01 | 1.000   | .742       |
| OI02 | 1.000   | .664       |
| OI03 | 1.000   | .725       |
| OI04 | 1.000   | .588       |
| OI05 | 1.000   | .812       |
| OI06 | 1.000   | .764       |
| OI07 | 1.000   | .697       |
| EV1  | 1.000   | .750       |
| EV2  | 1.000   | .642       |
| EV3  | 1.000   | .786       |
| EV4  | 1.000   | .695       |
| IM01 | 1.000   | .684       |
| IM03 | 1.000   | .767       |
| IM04 | 1.000   | .742       |
| POS1 | 1.000   | .645       |
| POS2 | 1.000   | .673       |
| POS4 | 1.000   | .722       |
| POS5 | 1.000   | .674       |
| POS6 | 1.000   | .649       |
| EM01 | 1.000   | .702       |
| EM04 | 1.000   | .784       |

IM02 1.000 .721

Extraction Method: Principal

Component Analysis.

**Total Variance Explained** 

|           |        |                  |            | tai variance |               |              |          |          |            |
|-----------|--------|------------------|------------|--------------|---------------|--------------|----------|----------|------------|
|           |        |                  |            |              |               |              | Rotat    | ion Sums | of Squared |
|           |        | Initial Eigenval | ues        | Extraction   | Sums of Squar | red Loadings | Loadings |          |            |
|           |        |                  |            |              |               |              |          | % of     |            |
|           |        | % of             | Cumulative |              | % of          | Cumulative   |          | Varianc  | Cumulative |
| Component | Total  | Variance         | %          | Total        | Variance      | %            | Total    | е        | %          |
| 1         | 10.895 | 49.523           | 49.523     | 10.895       | 49.523        | 49.523       | 4.460    | 20.272   | 20.272     |
| 2         | 1.584  | 7.201            | 56.724     | 1.584        | 7.201         | 56.724       | 3.311    | 15.048   | 35.321     |
| 3         | 1.277  | 5.803            | 62.527     | 1.277        | 5.803         | 62.527       | 3.286    | 14.938   | 50.259     |
| 4         | .988   | 4.492            | 67.019     | .988         | 4.492         | 67.019       | 2.881    | 13.095   | 63.354     |
| 5         | .884   | 4.019            | 71.038     | .884         | 4.019         | 71.038       | 1.690    | 7.684    | 71.038     |
| 6         | .785   | 3.569            | 74.607     |              |               |              |          |          |            |
| 7         | .668   | 3.037            | 77.644     |              |               |              |          |          |            |
| 8         | .608   | 2.762            | 80.405     |              |               |              |          |          |            |
| 9         | .551   | 2.504            | 82.910     |              |               |              |          |          |            |
| 10        | .499   | 2.267            | 85.177     |              |               |              |          |          |            |
| 11        | .421   | 1.915            | 87.092     |              |               |              |          |          |            |
| 12        | .378   | 1.717            | 88.809     |              |               |              |          |          |            |
| 13        | .359   | 1.632            | 90.441     |              |               |              |          |          |            |
| 14        | .337   | 1.530            | 91.970     |              |               |              |          |          |            |
| 15        | .292   | 1.326            | 93.296     |              |               |              |          |          |            |
| 16        | .277   | 1.259            | 94.555     |              |               |              |          |          |            |
| 17        | .272   | 1.238            | 95.793     |              |               |              |          |          |            |
| 18        | .241   | 1.096            | 96.889     |              |               |              |          |          |            |
| 19        | .214   | .973             | 97.862     |              |               |              |          |          |            |
| 20        | .186   | .846             | 98.708     |              |               |              |          |          |            |
| 21        | .152   | .693             | 99.401     |              |               |              |          |          |            |
| 22        | .132   | .599             | 100.000    |              |               |              |          |          |            |

Extraction Method: Principal Component Analysis.

# **Component Matrix**<sup>a</sup>

|              |      | Component |   |   |   |  |  |  |
|--------------|------|-----------|---|---|---|--|--|--|
|              | 1    | 2         | 3 | 4 | 5 |  |  |  |
| OI05         | .808 |           |   |   |   |  |  |  |
| OI05<br>OI01 | .798 |           |   |   |   |  |  |  |
| OI07         | .775 |           |   |   |   |  |  |  |

| 0100 |      |  |      |
|------|------|--|------|
| OI02 | .763 |  |      |
| OI06 | .759 |  |      |
| IM04 | .738 |  |      |
| OI03 | .735 |  |      |
| EV3  | .716 |  |      |
| IM03 | .713 |  |      |
| EV1  | .711 |  |      |
| POS4 | .704 |  |      |
| IM01 | .698 |  |      |
| IM02 | .692 |  |      |
| POS2 | .690 |  |      |
| POS1 | .688 |  |      |
| EV4  | .674 |  |      |
| POS6 | .670 |  |      |
| EM01 | .650 |  | .521 |
| OI04 | .638 |  |      |
| EV2  | .618 |  |      |
| POS5 | .617 |  |      |
| EM04 | .571 |  | .667 |

Extraction Method: Principal Component Analysis.

Rotated Component Matrix<sup>a</sup>

|      | Component |      |      |   |   |
|------|-----------|------|------|---|---|
|      | 1         | 2    | 3    | 4 | 5 |
| OI05 | .785      |      |      |   |   |
| OI03 | .760      |      |      |   |   |
| OI04 | .704      |      |      |   |   |
| OI06 | .703      |      |      |   |   |
| OI01 | .694      |      |      |   |   |
| OI07 | .663      |      |      |   |   |
| OI02 | .608      |      |      |   |   |
| POS5 |           | .763 |      |   |   |
| POS2 |           | .694 |      |   |   |
| POS6 |           | .691 |      |   |   |
| POS4 |           | .658 |      |   |   |
| POS1 |           | .596 |      |   |   |
| EV3  |           |      | .779 |   |   |
| EV1  |           |      | .756 |   |   |

a. 5 components extracted.

| EV2  |  | .728 |      |      |
|------|--|------|------|------|
| EV4  |  | .718 |      |      |
| IM03 |  |      | .734 |      |
| IM02 |  |      | .697 |      |
| IM04 |  |      | .668 |      |
| IM01 |  |      | .652 |      |
| EM04 |  |      |      | .808 |
| EM01 |  |      |      | .688 |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.<sup>a</sup>

a. Rotation converged in 7 iterations.

**Component Transformation Matrix** 

| Component | 1    | 2    | 3    | 4    | 5    |  |  |
|-----------|------|------|------|------|------|--|--|
| 1         | .572 | .458 | .449 | .426 | .283 |  |  |
| 2         | 618  | .370 | .643 | 258  | .018 |  |  |
| 3         | 152  | 744  | .459 | .449 | .109 |  |  |
| 4         | 499  | .310 | 370  | .720 | .011 |  |  |
| 5         | 135  | 062  | 194  | 181  | .953 |  |  |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

#### **KMO and Bartlett's Test**

| Kaiser-Meyer-Olkin Measure o  | .887                                             |      |
|-------------------------------|--------------------------------------------------|------|
| Bartlett's Test of Sphericity | Bartlett's Test of Sphericity Approx. Chi-Square |      |
|                               | df                                               | 21   |
|                               | Sig.                                             | .000 |

# Communalities

|      | Initial | Extraction |
|------|---------|------------|
| OGC1 | 1.000   | .723       |
| OGC2 | 1.000   | .719       |
| OGC3 | 1.000   | .720       |
| OGC4 | 1.000   | .722       |
| OGC5 | 1.000   | .741       |
| OGC6 | 1.000   | .623       |
| OGC7 | 1.000   | .489       |

Extraction Method: Principal

Component Analysis.

**Total Variance Explained** 

|           |       | Initial Eigenvalu | es           | Extraction Sums of Squared Loadings |               |              |  |
|-----------|-------|-------------------|--------------|-------------------------------------|---------------|--------------|--|
| Component | Total | % of Variance     | Cumulative % | Total                               | % of Variance | Cumulative % |  |
| 1         | 4.738 | 67.681            | 67.681       | 4.738                               | 67.681        | 67.681       |  |
| 2         | .625  | 8.927             | 76.608       |                                     |               |              |  |
| 3         | .542  | 7.747             | 84.355       |                                     |               |              |  |
| 4         | .382  | 5.451             | 89.807       |                                     |               |              |  |
| 5         | .330  | 4.710             | 94.517       |                                     |               |              |  |
| 6         | .208  | 2.976             | 97.493       |                                     |               |              |  |
| 7         | .176  | 2.507             | 100.000      |                                     |               |              |  |

Extraction Method: Principal Component Analysis.

**Component Matrix**<sup>a</sup>

|      | Component |
|------|-----------|
|      | 1         |
| OGC5 | .861      |
| OGC1 | .850      |
| OGC4 | .850      |
| OGC3 | .848      |
| OGC2 | .848      |
| OGC6 | .790      |
| OGC7 | .699      |

Extraction Method:

Principal Component

Analysis.

a. 1 components extracted.

Rotated Component

Matrixa

a. Only one

component

was

extracted.

The solution

cannot be

rotated.

# **CFA**

Number of variables in your model: 64
Number of observed variables: 29
Number of unobserved variables: 35
Number of exogenous variables: 35
Number of endogenous variables: 29

|           | Weights | Covariances | Variances | Means | Intercepts | Total |
|-----------|---------|-------------|-----------|-------|------------|-------|
| Fixed     | 35      | 0           | 0         | 0     | 0          | 35    |
| Labeled   | 0       | 0           | 0         | 0     | 0          | 0     |
| Unlabeled | 23      | 15          | 35        | 0     | 0          | 73    |
| Total     | 58      | 15          | 35        | 0     | 0          | 108   |

# Notes for Model (Default model)

# Computation of degrees of freedom (Default model)

Number of distinct sample moments: 435 Number of distinct parameters to be estimated: 73

Degrees of freedom (435 - 73): 362

# Result (Default model)

Minimum was achieved

Chi-square = 1108.294

Degrees of freedom = 362

Probability level = .000

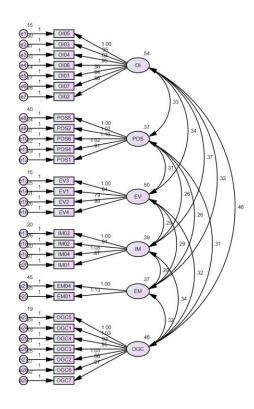
|      |   |    | Estimate | S.E. | C.R.   | P   | Label |
|------|---|----|----------|------|--------|-----|-------|
| OI05 | < | OI | 1.000    |      |        |     |       |
| OI03 | < | OI | .953     | .059 | 16.142 | *** |       |
| OI04 | < | OI | .834     | .068 | 12.307 | *** |       |
| OI06 | < | OI | .953     | .061 | 15.621 | *** |       |
| OI01 | < | OI | .862     | .045 | 19.002 | *** |       |
| OI07 | < | OI | .944     | .057 | 16.525 | *** |       |
| OI02 | < | OI | .858     | .055 | 15.718 | *** |       |

|        |     | Estimate | S.E. | C.R.   | P   | Label |
|--------|-----|----------|------|--------|-----|-------|
| POS5 < | POS | 1.000    |      |        |     |       |
| POS2 < | POS | 1.023    | .092 | 11.120 | *** |       |
| POS6 < | POS | 1.105    | .105 | 10.535 | *** |       |
| POS4 < | POS | 1.019    | .090 | 11.281 | *** |       |
| POS1 < | POS | .912     | .089 | 10.266 | *** |       |
| EV3 <  | EV  | 1.000    |      |        |     |       |
| EV1 <  | EV  | .941     | .062 | 15.270 | *** |       |
| EV2 <  | EV  | .785     | .062 | 12.751 | *** |       |
| EV4 <  | EV  | .983     | .063 | 15.709 | *** |       |
| IM03 < | IM  | 1.000    |      |        |     |       |
| IM02 < | IM  | .907     | .071 | 12.736 | *** |       |
| IM04 < | IM  | 1.054    | .072 | 14.578 | *** |       |
| IM01 < | IM  | .867     | .071 | 12.246 | *** |       |
| EM04 < | EM  | 1.000    |      |        |     |       |
| EM01 < | EM  | 1.126    | .125 | 8.977  | *** |       |
| OGC5 < | OGC | 1.000    |      |        |     |       |
| OGC1 < | OGC | 1.031    | .065 | 15.879 | *** |       |
| OGC4 < | OGC | .928     | .057 | 16.390 | *** |       |
| OGC3 < | OGC | .951     | .060 | 15.797 | *** |       |
| OGC2 < | OGC | 1.033    | .065 | 15.876 | *** |       |
| OGC6 < | OGC | .860     | .062 | 13.903 | *** |       |
| OGC7 < | OGC | .969     | .081 | 11.966 | *** |       |
|        |     | Estimate |      |        |     |       |
| OI05 < | OI  | .883     |      |        |     |       |
| OI03 < | OI  | .789     |      |        |     |       |
| OI04 < | OI  | .666     |      |        |     |       |
| OI06 < | OI  | .775     |      |        |     |       |
| OI01 < | OI  | .860     |      |        |     |       |
| OI07 < | OI  | .800     |      |        |     |       |
| OI02 < | OI  | .777     |      |        |     |       |
| POS5 < | POS | .690     |      |        |     |       |
| POS2 < | POS | .785     |      |        |     |       |
| POS6 < | POS | .739     |      |        |     |       |
| POS4 < | POS | .798     |      |        |     |       |
| POS1 < | POS | .718     |      |        |     |       |
| EV3 <  | EV  | .878     |      |        |     |       |
| EV1 <  | EV  | .798     |      |        |     |       |
| EV2 <  | EV  | .707     |      |        |     |       |
| EV4 <  | EV  | .813     |      |        |     |       |
| IM03 < | IM  | .815     |      |        |     |       |
| IM02 < | IM  | .747     |      |        |     |       |

|            | 1        | 7    |       |     |       |
|------------|----------|------|-------|-----|-------|
|            | Estimate |      |       |     |       |
| IM04 < IM  | .829     |      |       |     |       |
| IM01 < IM  | .724     |      |       |     |       |
| EM04 < EM  | .672     |      |       |     |       |
| EM01 < EM  | .757     |      |       |     |       |
| OGC5 < OGC | .841     |      |       |     |       |
| OGC1 < OGC | .814     |      |       |     |       |
| OGC4 < OGC | .831     |      |       |     |       |
| OGC3 < OGC | .812     |      |       |     |       |
| OGC2 < OGC | .814     |      |       |     |       |
| OGC6 < OGC | .747     |      |       |     |       |
| OGC7 < OGC | .671     |      |       |     |       |
|            | Estimate | S.E. | C.R.  | P   | Label |
| OI <> POS  | .329     | .045 | 7.363 | *** |       |
| OI <> EV   | .344     | .045 | 7.710 | *** |       |
| OI <> IM   | .374     | .045 | 8.402 | *** |       |
| OI <> EM   | .327     | .048 | 6.806 | *** |       |
| OI <> OGC  | .465     | .050 | 9.246 | *** |       |
| POS <> EV  | .312     | .043 | 7.233 | *** |       |
| POS <> IM  | .261     | .038 | 6.826 | *** |       |
| POS <> EM  | .265     | .043 | 6.147 | *** |       |
| POS <> OGC | .313     | .043 | 7.372 | *** |       |
| EV <> IM   | .293     | .040 | 7.354 | *** |       |
| EV <> EM   | .288     | .045 | 6.392 | *** |       |
| EV <> OGC  | .325     | .042 | 7.705 | *** |       |
| IM <> EM   | .279     | .043 | 6.564 | *** |       |
| IM <> OGC  | .344     | .042 | 8.243 | *** |       |
| EM <> OGC  | .316     | .046 | 6.893 | *** |       |
|            | Estimate |      |       |     |       |
| OI <> POS  | .741     |      |       |     |       |
| OI <> EV   | .665     |      |       |     |       |
| OI <> IM   | .815     |      |       |     |       |
| OI <> EM   | .730     |      |       |     |       |
| OI <> OGC  | .938     |      |       |     |       |
| POS <> EV  | .730     |      |       |     |       |
| POS <> IM  | .688     |      |       |     |       |
| POS <> EM  | .716     |      |       |     |       |
| POS <> OGC | .767     |      |       |     |       |
| EV <> IM   | .663     |      |       |     |       |
| EV <> EM   | .669     |      |       |     |       |
| EV <> OGC  | .683     |      |       |     |       |
| IM <> EM   | .732     |      |       |     |       |
|            |          |      |       |     |       |

|       |        | Esti | imate |        |       |       |
|-------|--------|------|-------|--------|-------|-------|
| IM <> | OGC    |      | .816  |        |       |       |
| EM <> | OGC    |      | .768  |        |       |       |
|       | Estima | te   | S.E.  | C.R    | . P   | Label |
| OI    | .53    | 9    | .061  | 8.776  | 5 *** |       |
| POS   | .36    | 57   | .062  | 5.943  | 3 *** |       |
| EV    | .49    | 7    | .059  | 8.463  | 3 *** |       |
| IM    | .39    | 1    | .052  | 7.528  | 3 *** |       |
| EM    | .37    | 2    | .071  | 5.28   | 1 *** |       |
| OGC   | .45    | 55   | .056  | 8.120  | ) *** |       |
| e1    | .15    | 3    | .017  | 9.017  | 7 *** |       |
| e2    | .29    | 6    | .029  | 10.154 | 4 *** |       |
| e3    | .47    | 1    | .044  | 10.665 | 5 *** |       |
| e4    | .32    | 26   | .032  | 10.245 | 5 *** |       |
| e5    | .14    | -1   | .015  | 9.436  | 5 *** |       |
| e6    | .27    | 1    | .027  | 10.080 | ) *** |       |
| e7    | .26    | 0    | .025  | 10.229 | ***   |       |
| e8    | .40    | )3   | .041  | 9.91   | 5 *** |       |
| e9    | .23    | 9    | .027  | 8.96   | 5 *** |       |
| e10   | .37    | '3   | .039  | 9.52   | 1 *** |       |
| e11   | .21    | 7    | .025  | 8.763  | 3 *** |       |
| e12   | .28    | 86   | .029  | 9.708  | 3 *** |       |
| e13   | .14    | 8    | .021  | 6.964  | 4 *** |       |
| e14   | .25    | 51   | .028  | 8.959  | 9 *** |       |
| e15   | .30    | 6    | .031  | 9.917  | 7 *** |       |
| e16   | .24    | 17   | .028  | 8.708  | 3 *** |       |
| e17   | .19    | 8    | .023  | 8.542  | 2 *** |       |
| e18   | .25    | 6    | .027  | 9.500  | 5 *** |       |
| e19   | .19    | 8    | .024  | 8.250  | ) *** |       |
| e20   | .26    | 57   | .027  | 9.714  | 4 *** |       |
| e21   | .45    | 3    | .053  | 8.586  | 5 *** |       |
| e22   | .35    | 51   | .053  | 6.630  | ) *** |       |
| e23   | .18    | 88   | .019  | 9.670  |       |       |
| e24   | .24    | 5    | .025  | 9.949  | ***   |       |
| e25   | .17    | 6    | .018  | 9.794  | 4 *** |       |
| e26   | .21    | 3    | .021  | 9.97   | 1 *** |       |
| e27   | .24    | 7    | .025  | 9.950  |       |       |
| e28   | .26    | 57   | .026  | 10.380 | ) *** |       |
| e29   | .52    | 21   | .049  | 10.64  | 5 *** |       |

|      | Estimate |
|------|----------|
| OGC7 | .451     |
| OGC6 | .558     |


|      | Estimate |
|------|----------|
| OGC2 | .663     |
| OGC3 | .659     |
| OGC4 | .690     |
| OGC1 | .663     |
| OGC5 | .708     |
| EM01 | .573     |
| EM04 | .451     |
| IM01 | .524     |
| IM04 | .687     |
| IM02 | .557     |
| IM03 | .665     |
| EV4  | .661     |
| EV2  | .500     |
| EV1  | .637     |
| EV3  | .771     |
| POS1 | .515     |
| POS4 | .637     |
| POS6 | .546     |
| POS2 | .616     |
| POS5 | .477     |
| OI02 | .604     |
| OI07 | .639     |
| OI01 | .739     |
| OI06 | .600     |
| OI04 | .443     |
| OI03 | .623     |
| OI05 | .779     |

|        |     | M.I.   | Par Change |
|--------|-----|--------|------------|
| e29 <> | OGC | 18.753 | 063        |
| e29 <> | OI  | 18.482 | .071       |
| e25 <> | e29 | 20.082 | 093        |
| e24 <> | e27 | 34.722 | .102       |
| e24 <> | e25 | 16.495 | 060        |
| e19 <> | e20 | 20.404 | 078        |
| e18 <> | e26 | 17.282 | .069       |
| e18 <> | e20 | 41.896 | .121       |
| e17 <> | e19 | 35.574 | .092       |
| e14 <> | e20 | 16.189 | .077       |
| e12 <> | IM  | 17.420 | .064       |
| e7 <>  | e29 | 17.600 | 104        |
| e6 <>  | e22 | 17.411 | .100       |

|                      | N     | M.I. Pa | r Change     | ,            |              |            |       |       |
|----------------------|-------|---------|--------------|--------------|--------------|------------|-------|-------|
| e4 <> POS            |       | 570     | .073         |              |              |            |       |       |
| e4 <> e26            |       | 579     | 079          |              |              |            |       |       |
| e4 <> e18            |       | 659     | 095          | 5            |              |            |       |       |
| e4 <> e14            | 24.   | 186     | 102          | 2            |              |            |       |       |
| M.I. Pa              | ar Cl | hange   |              |              |              |            |       |       |
|                      |       | M.I.    | Par Chan     | ge           |              |            |       |       |
| IM01 < IM02          | 10    | 6.463   | .1           | 86           |              |            |       |       |
| IM02 < IM01          | 13    | 8.027   | .1           | 95           |              |            |       |       |
| OI06 < POS5          | 1:    | 5.298   | .1           | 68           |              |            |       |       |
| Model                |       | NPAR    | CM           | IIN          | DF           | P          | CMI   | N/DF  |
| Default model        |       | 73      | 1108.2       | 294          | 362          | .000       |       | 3.062 |
| Saturated model      |       | 435     | ).           | 000          | 0            |            |       |       |
| Independence mo      | del   | 29      | 5954.2       | 214          | 406          | .000       | 1     | 4.666 |
| Model                |       | RMR     | GFI          | AGI          | FI P         | GFI        |       |       |
| Default model        |       | .034    | .765         | .71          | 18           | .637       |       |       |
| Saturated model      |       | .000    | 1.000        |              |              |            |       |       |
| Independence mo      | del   | .331    | .125         | .06          | 53           | .117       |       | ,     |
| Model                |       | NFI     |              |              | IFI          | TLI        | CFI   |       |
|                      |       | Delta1  |              | Delt         |              | rho2       |       |       |
| Default model        |       | .814    |              |              |              | .849       | .865  |       |
| Saturated model      |       | 1.000   |              | 1.0          |              |            | 1.000 |       |
| Independence mo      | del   | .000    |              |              |              | .000       | .000  | ]     |
| Model                |       | PRAT    |              |              | PCFI         |            |       |       |
| Default model        |       |         | 92 .72       |              | .772         |            |       |       |
| Saturated model      |       |         | 00. 00       |              | .000         |            |       |       |
| Independence mo      | del   | 1.00    |              |              | .000         |            | ⊣     |       |
| Model                |       |         |              | LO 90        |              | HI 90      |       |       |
| Default model        |       | 746.2   |              | 9.886        |              | 50.309     |       |       |
| Saturated model      | 1 1   |         | 00           | .000         |              | .000       |       |       |
| Independence mo      | aei   | 5548.2  |              | 1.959        |              | 00.898     |       |       |
| Model                |       | FMIN    |              |              | O 90         | HI         |       |       |
| Default model        |       | 4.469   |              |              | 2.621        | 3.4        |       |       |
| Saturated model      | dal   | .000    |              |              | .000         |            | 00    |       |
| Independence mo      | uei   | 24.009  |              |              | 1.379        | 23.3       |       |       |
| Model  Default model |       | RMSE    |              |              | HI 90        |            | OSE   |       |
| Default model        | dal   | .09     |              | 85<br>20     | .097         |            | .000  |       |
| Independence mo      | uei   | .23     |              | 29<br>DCC    | .240         | DIC        |       | 7410  |
| Model  Default model |       | 1254.2  | IC<br>04 127 | BCC<br>4.386 |              | BIC 11.068 |       | CAIC  |
| Saturated model      |       | 870.0   |              |              |              |            |       | 4.068 |
| Saturated model      |       | 870.0   | υυ 98        | 9.725        | ) <u>2</u> 4 | 00.092     | 283   | 5.092 |

| Model              | AIC      | В      | CC     | BIC      | CAIC    |
|--------------------|----------|--------|--------|----------|---------|
| Independence model | 6012.214 | 6020.  | 195 61 | 14.220 6 | 143.220 |
| Model              | ECVI     | LO 90  | HI 90  | MECVI    |         |
| Default model      | 5.058    | 4.669  | 5.477  | 5.139    |         |
| Saturated model    | 3.508    | 3.508  | 3.508  | 3.991    |         |
| Independence model | 24.243   | 23.250 | 25.262 | 24.275   |         |
| Model              | HOELTE   | ER HO  | ELTER  |          |         |
| Model              |          | 05     | .01    |          |         |
| Default model      |          | 92     | 96     |          |         |
| Independence model |          | 19     | 20     |          |         |
| N                  |          |        |        |          |         |

Minimization: .026 Miscellaneous: .578 Bootstrap: .000 Total: .604



# SEM

Number of variables in your model: 65 Number of observed variables: 29 Number of unobserved variables: 36 Number of exogenous variables: 35 Number of endogenous variables: 30

|           | Weights | Covariances | Variances | Means | Intercepts | Total |
|-----------|---------|-------------|-----------|-------|------------|-------|
| Fixed     | 36      | 0           | 0         | 0     | 0          | 36    |
| Labeled   | 0       | 0           | 0         | 0     | 0          | 0     |
| Unlabeled | 28      | 10          | 35        | 0     | 0          | 73    |
| Total     | 64      | 10          | 35        | 0     | 0          | 109   |

# **Notes for Model (Default model)**

# Computation of degrees of freedom (Default model)

Number of distinct sample moments: 435 Number of distinct parameters to be estimated: 73

Degrees of freedom (435 - 73): 362

# Result (Default model)

Minimum was achieved

Chi-square = 1108.294

Degrees of freedom = 362

Probability level = .000

|      | · |     | Estimate | S.E. | C.R.   | P    | Label |
|------|---|-----|----------|------|--------|------|-------|
| OGC  | < | OI  | .655     | .074 | 8.822  | ***  |       |
| OGC  | < | POS | .107     | .075 | 1.423  | .155 |       |
| OGC  | < | EV  | .010     | .054 | .176   | .860 |       |
| OGC  | < | IM  | .085     | .080 | 1.062  | .288 |       |
| OGC  | < | EM  | .126     | .088 | 1.427  | .153 |       |
| OI05 | < | OI  | 1.000    |      |        |      |       |
| OI03 | < | OI  | .953     | .059 | 16.142 | ***  |       |
| OI04 | < | OI  | .834     | .068 | 12.307 | ***  |       |
| OI06 | < | OI  | .953     | .061 | 15.621 | ***  |       |
| OI01 | < | OI  | .862     | .045 | 19.002 | ***  |       |
| OI07 | < | OI  | .944     | .057 | 16.525 | ***  |       |
| OI02 | < | OI  | .858     | .055 | 15.718 | ***  |       |
| POS5 | < | POS | 1.000    |      |        |      |       |
| POS2 | < | POS | 1.023    | .092 | 11.120 | ***  |       |
| POS6 | < | POS | 1.105    | .105 | 10.535 | ***  |       |
| POS4 | < | POS | 1.019    | .090 | 11.281 | ***  |       |
| POS1 | < | POS | .912     | .089 | 10.266 | ***  |       |
| EV3  | < | EV  | 1.000    |      |        |      |       |
| EV1  | < | EV  | .941     | .062 | 15.270 | ***  |       |
| EV2  | < | EV  | .785     | .062 | 12.751 | ***  |       |

|         |           |          | ~ -  | ~ ~ ~     |             |       |
|---------|-----------|----------|------|-----------|-------------|-------|
| T77.7.4 |           | Estimate | S.E. | C.R.      | P           | Label |
| EV4 <   | EV        | .983     | .063 | 15.709    | ***         |       |
| IM03 <  | IM        | 1.000    | 071  | 10.706    | ale ale ale |       |
| IM02 <  | IM<br>D.f | .907     | .071 | 12.736    | ***         |       |
| IM04 <  | IM        | 1.054    | .072 | 14.578    | ***         |       |
| IM01 <  | IM        | .867     | .071 | 12.246    | ***         |       |
| EM04 <  | EM        | 1.000    |      |           |             |       |
| EM01 <  | EM        | 1.126    | .125 | 8.977     | ***         |       |
| OGC5 <  | OGC       | 1.000    | 0    | 4 = 0 = 0 |             |       |
| OGC1 <  | OGC       | 1.031    | .065 | 15.879    | ***         |       |
| OGC4 <  | OGC       | .928     | .057 | 16.390    | ***         |       |
| OGC3 <  | OGC       | .951     | .060 | 15.797    | ***         |       |
| OGC2 <  | OGC       | 1.033    | .065 | 15.876    | ***         |       |
| OGC6 <  | OGC       | .860     | .062 | 13.903    | ***         |       |
| OGC7 <  | OGC       | .969     | .081 | 11.966    | ***         |       |
|         |           | Estimate |      |           |             |       |
| OGC <   | OI        | .713     |      |           |             |       |
| OGC <   | POS       | .096     |      |           |             |       |
| OGC <   | EV        | .010     |      |           |             |       |
| OGC <   | IM        | .079     |      |           |             |       |
| OGC <   | EM        | .114     |      |           |             |       |
| OI05 <  | OI        | .883     |      |           |             |       |
| OI03 <  | OI        | .789     |      |           |             |       |
| OI04 <  | OI        | .666     |      |           |             |       |
| OI06 <  | OI        | .775     |      |           |             |       |
| OI01 <  | OI        | .860     |      |           |             |       |
| OI07 <  | OI        | .800     |      |           |             |       |
| OI02 <  | OI        | .777     |      |           |             |       |
| POS5 <  | POS       | .690     |      |           |             |       |
| POS2 <  | POS       | .785     |      |           |             |       |
| POS6 <  | POS       | .739     |      |           |             |       |
| POS4 <  | POS       | .798     |      |           |             |       |
| POS1 <  | POS       | .718     |      |           |             |       |
| EV3 <   | EV        | .878     |      |           |             |       |
| EV1 <   | EV        | .798     |      |           |             |       |
| EV2 <   | EV        | .707     |      |           |             |       |
| EV4 <   | EV        | .813     |      |           |             |       |
| IM03 <  | IM        | .815     |      |           |             |       |
| IM02 <  | IM        | .747     |      |           |             |       |
| IM04 <  | IM        | .829     |      |           |             |       |
| IM01 <  | IM        | .724     |      |           |             |       |
| EM04 <  | EM        | .672     |      |           |             |       |

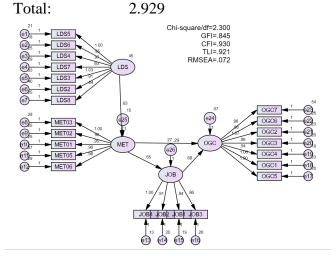
|            | Estimate |          |       |       |       |
|------------|----------|----------|-------|-------|-------|
| EM01 < EM  | .757     |          |       |       |       |
| OGC5 < OGC | .841     |          |       |       |       |
| OGC1 < OGC | .814     | <b>.</b> |       |       |       |
| OGC4 < OGC | .831     |          |       |       |       |
| OGC3 < OGC | .812     |          |       |       |       |
| OGC2 < OGC | .814     |          |       |       |       |
| OGC6 < OGC | .747     | 7        |       |       |       |
| OGC7 < OGC | .671     | L        |       |       |       |
| ]          | Estimate | S.E.     | C.R.  | P I   | Label |
| OI <> POS  | .329     | .045     | 7.363 | ***   |       |
| OI <> EV   | .344     | .045     | 7.710 | ***   |       |
| OI <> IM   | .374     | .045     | 8.402 | ***   |       |
| OI <> EM   | .327     | .048     | 6.806 | ***   |       |
| POS <> EV  | .312     | .043     | 7.233 | ***   |       |
| POS <> IM  | .261     | .038     | 6.826 | ***   |       |
| POS <> EM  | .265     | .043     | 6.147 | ***   |       |
| EV <> IM   | .293     | .040     | 7.354 | ***   |       |
| EV <> EM   | .288     | .045     | 6.392 | ***   |       |
| IM <> EM   | .279     | .043     | 6.564 | ***   |       |
|            | Estimate |          |       |       |       |
| OI <> POS  | .741     |          |       |       |       |
| OI <> EV   | .665     |          |       |       |       |
| OI <> IM   | .815     |          |       |       |       |
| OI <> EM   | .730     |          |       |       |       |
| POS <> EV  | .730     |          |       |       |       |
| POS <> IM  | .688     |          |       |       |       |
| POS <> EM  | .716     |          |       |       |       |
| EV <> IM   | .663     |          |       |       |       |
| EV <> EM   | .669     |          |       |       |       |
| IM <> EM   | .732     |          |       |       | _     |
| Estimat    | e S.E.   | C.R.     | P     | Label |       |
| OI .539    | 9 .061   | 8.776    | ***   |       |       |
| POS .36    | 7 .062   | 5.943    | ***   |       |       |
| EV .49°    | 7 .059   | 8.463    | ***   |       |       |
| IM .39     | 1 .052   | 7.528    | ***   |       |       |
| EM .372    |          | 5.281    |       |       |       |
| e30 .04:   |          | 4.556    |       |       |       |
| e1 .153    | 3 .017   | 9.017    |       |       |       |
| e2 .290    |          | 10.154   |       |       |       |
| e3 .47     | 1 .044   | 10.665   | ***   |       |       |

|     | Estimate | S.E. | C.R.   | P   | Label |
|-----|----------|------|--------|-----|-------|
| e4  | .326     | .032 | 10.245 | *** |       |
| e5  | .141     | .015 | 9.436  | *** |       |
| e6  | .271     | .027 | 10.080 | *** |       |
| e7  | .260     | .025 | 10.229 | *** |       |
| e8  | .403     | .041 | 9.916  | *** |       |
| e9  | .239     | .027 | 8.966  | *** |       |
| e10 | .373     | .039 | 9.521  | *** |       |
| e11 | .217     | .025 | 8.763  | *** |       |
| e12 | .286     | .029 | 9.708  | *** |       |
| e13 | .148     | .021 | 6.964  | *** |       |
| e14 | .251     | .028 | 8.959  | *** |       |
| e15 | .306     | .031 | 9.917  | *** |       |
| e16 | .247     | .028 | 8.708  | *** |       |
| e17 | .198     | .023 | 8.542  | *** |       |
| e18 | .256     | .027 | 9.506  | *** |       |
| e19 | .198     | .024 | 8.250  | *** |       |
| e20 | .267     | .027 | 9.714  | *** |       |
| e21 | .453     | .053 | 8.586  | *** |       |
| e22 | .351     | .053 | 6.630  | *** |       |
| e23 | .188     | .019 | 9.670  | *** |       |
| e24 | .245     | .025 | 9.949  | *** |       |
| e25 | .176     | .018 | 9.794  | *** |       |
| e26 | .213     | .021 | 9.971  | *** |       |
| e27 | .247     | .025 | 9.950  | *** |       |
| e28 | .267     | .026 | 10.380 | *** |       |
| e29 | .521     | .049 | 10.646 | *** |       |

|      | Estimate |
|------|----------|
| OGC  | .901     |
| OGC7 | .451     |
| OGC6 | .558     |
| OGC2 | .663     |
| OGC3 | .659     |
| OGC4 | .690     |
| OGC1 | .663     |
| OGC5 | .708     |
| EM01 | .573     |
| EM04 | .451     |
| IM01 | .524     |
| IM04 | .687     |
| IM02 | .557     |
| IM03 | .665     |

|      | Estimate |
|------|----------|
| EV4  | .661     |
| EV2  | .500     |
| EV1  | .637     |
| EV3  | .771     |
| POS1 | .515     |
| POS4 | .637     |
| POS6 | .546     |
| POS2 | .616     |
| POS5 | .477     |
| OI02 | .604     |
| OI07 | .639     |
| OI01 | .739     |
| OI06 | .600     |
| OI04 | .443     |
| OI03 | .623     |
| OI05 | .779     |

|        |     | M.I.   | Par Change |
|--------|-----|--------|------------|
| e29 <> | e30 | 18.753 | 063        |
| e25 <> | e29 | 20.082 | 093        |
| e24 <> | e27 | 34.722 | .102       |
| e24 <> | e25 | 16.495 | 060        |
| e19 <> | e20 | 20.404 | 078        |
| e18 <> | e26 | 17.282 | .069       |
| e18 <> | e20 | 41.896 | .121       |
| e17 <> | e19 | 35.574 | .092       |
| e14 <> | e20 | 16.189 | .077       |
| e12 <> | IM  | 16.870 | .064       |
| e7 <>  | e29 | 17.600 | 104        |
| e6 <>  | e22 | 17.411 | .100       |
| e4 <>  | POS | 19.057 | .071       |
| e4 <>  | e26 | 18.579 | 079        |
| e4 <>  | e18 | 21.659 | 095        |
| e4 <>  | e14 | 24.186 | 102        |


M.I. Par Change

|        |      | M.I.   | Par Change |
|--------|------|--------|------------|
| IM01 < | IM02 | 16.463 | .186       |
| IM02 < | IM01 | 18.027 | .195       |
| OI06 < | POS5 | 15.298 | .168       |

| Negative eigenvalues C | ondition #    | Smallest eigenvalue | Diameter  | · F      | NTries | Ratio    |
|------------------------|---------------|---------------------|-----------|----------|--------|----------|
| e 18                   |               | -1.271              | 9999.000  | 5785.104 | 0      | 9999.000 |
| e 24                   |               | 520                 | 4.033     | 3582.891 | 19     | .245     |
| e 6                    |               | 307                 | 1.906     | 1995.194 | 4      | .771     |
| e* 2                   |               | 486                 | .870      | 1519.114 | 4      | .797     |
| e 0                    | 1979.032      |                     | .579      | 1231.826 | 5      | .928     |
| e 0                    | 639.881       |                     | .395      | 1197.528 | 5      | .000     |
| e 0                    | 478.886       |                     | .568      | 1141.046 | 2      | .000     |
| e 0                    | 272.468       |                     | .476      | 1112.180 | 1      | 1.004    |
| e 0                    | 258.197       |                     | .221      | 1108.712 | 1      | .903     |
| e 0                    | 265.889       |                     | .077      |          | 1      | 1.010    |
| e 0                    | 265.056       |                     | .006      | 1108.294 | 1      | 1.000    |
| e 0                    | 265.282       |                     | .000      | 1108.294 | 1      | 1.000    |
| Model                  | NPAR          | CMIN I              | OF P      | CMIN/DF  |        |          |
| Default model          | 73            | 1108.294 3          | .000      | 3.062    |        |          |
| Saturated model        | 435           | .000                | 0         |          |        |          |
| Independence model     | 29            | 5954.214 4          | .000      | 14.666   |        |          |
| Model                  | RMR           | GFI AGFI            | PGFI      |          |        |          |
| Default model          | .034          | .765 .718           | .637      |          |        |          |
| Saturated model        | .000          | 1.000               |           |          |        |          |
| Independence model     | .331          | .125 .063           | .117      |          |        |          |
| Model                  | NFI<br>Delta1 | RFI IFI rho1 Delta2 |           | CFI      |        |          |
| Default model          | .814          | .791 .867           | .849      | .865     |        |          |
| Saturated model        | 1.000         | 1.000               | )         | 1.000    |        |          |
| Independence model     | .000          | .000. 000.          | .000      | .000     |        |          |
| Model                  | PRATIO        | PNFI PC             | FI        |          |        |          |
| Default model          | .892          | .726 .7             | 72        |          |        |          |
| Saturated model        | .000          | .000 .00            | 00        |          |        |          |
| Independence model     | 1.000         | .000 .00            | 00        | _        |        |          |
| Model                  | NCF           | P LO 90             | HI 90     |          |        |          |
| Default model          | 746.294       | 4 649.886           | 850.309   |          |        |          |
| Saturated model        | .000          | .000                | .000      |          |        |          |
| Independence model     | 5548.214      | 5301.959            | 5800.898  |          |        |          |
| Model                  | FMIN          | F0 LO               |           | 90       |        |          |
| Default model          | 4.469         | 3.009 2.6           | 521 3.4   | 29       |        |          |
| Saturated model        | .000          | .000.               | 0.00      | 00       |        |          |
| Independence model     | 24.009        | 22.372 21.3         | 379 23.39 | 91       |        |          |
| Model                  | RMSEA         | LO 90 HI            | 90 PCL    | OSE      |        |          |
| Default model          | .091          | .085 .0             | )97       | .000     |        |          |

| Model              | RMSEA    | LO 90  | HI 90   | PCLOS  | E        |
|--------------------|----------|--------|---------|--------|----------|
| Independence model | .235     | .229   | .240    | .00    | 0        |
| Model              | AIC      | В      | CC      | BIC    | CAIC     |
| Default model      | 1254.294 | 1274.3 | 386 15  | 11.068 | 1584.068 |
| Saturated model    | 870.000  | 989.7  | 725 240 | 00.092 | 2835.092 |
| Independence model | 6012.214 | 6020.1 | 195 61  | 14.220 | 5143.220 |
| Model              | ECVI     | LO 90  | HI 90   | MECVI  |          |
| Default model      | 5.058    | 4.669  | 5.477   | 5.139  |          |
| Saturated model    | 3.508    | 3.508  | 3.508   | 3.991  |          |
| Independence model | 24.243   | 23.250 | 25.262  | 24.275 |          |
| Model              | HOELTE   | R HOI  | ELTER   |        |          |
| Model              | .0       | 5      | .01     |        |          |
| Default model      | 9        | 2      | 96      |        |          |
| Independence model | 1        | 9      | 20      |        |          |

Minimization: .062 Miscellaneous: 2.867 Bootstrap: .000 Total: 2.929



**Estimates (Group number 1 - Default model)** 

**Scalar Estimates (Group number 1 - Default model)** 

**Maximum Likelihood Estimates** 

**Standardized Total Effects (Group number 1 - Default model)** 

|     | LDS  | MET  | JOB  | OGC  |
|-----|------|------|------|------|
| MET | .821 | .000 | .000 | .000 |
| JOB | .524 | .639 | .000 | .000 |
| OGC | .600 | .731 | .711 | .000 |

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| OGC7  | .394 | .480 | .467 | .657 |
| OGC6  | .449 | .547 | .533 | .749 |
| OGC2  | .495 | .603 | .587 | .826 |
| OGC3  | .492 | .599 | .583 | .820 |
| OGC4  | .493 | .601 | .585 | .823 |
| OGC1  | .495 | .604 | .588 | .826 |
| OGC5  | .496 | .604 | .588 | .827 |
| JOB3  | .399 | .486 | .760 | .000 |
| JOB1  | .422 | .514 | .805 | .000 |
| JOB2  | .429 | .523 | .818 | .000 |
| JOB4  | .467 | .569 | .891 | .000 |
| MET06 | .637 | .776 | .000 | .000 |
| MET05 | .601 | .733 | .000 | .000 |
| MET01 | .648 | .789 | .000 | .000 |
| MET02 | .655 | .798 | .000 | .000 |
| MET03 | .646 | .787 | .000 | .000 |
| LDS8  | .745 | .000 | .000 | .000 |
| LDS2  | .691 | .000 | .000 | .000 |
| LDS3  | .770 | .000 | .000 | .000 |
| LDS7  | .755 | .000 | .000 | .000 |
| LDS4  | .796 | .000 | .000 | .000 |
| LDS6  | .834 | .000 | .000 | .000 |
| LDS5  | .825 | .000 | .000 | .000 |

# Standardized Direct Effects (Group number 1 - Default model)

|      | LDS  | MET  | JOB  | OGC  |
|------|------|------|------|------|
| MET  | .821 | .000 | .000 | .000 |
| JOB  | .000 | .639 | .000 | .000 |
| OGC  | .000 | .276 | .711 | .000 |
| OGC7 | .000 | .000 | .000 | .657 |
| OGC6 | .000 | .000 | .000 | .749 |
| OGC2 | .000 | .000 | .000 | .826 |
| OGC3 | .000 | .000 | .000 | .820 |
| OGC4 | .000 | .000 | .000 | .823 |
| OGC1 | .000 | .000 | .000 | .826 |
| OGC5 | .000 | .000 | .000 | .827 |
| JOB3 | .000 | .000 | .760 | .000 |
| JOB1 | .000 | .000 | .805 | .000 |

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| JOB2  | .000 | .000 | .818 | .000 |
| JOB4  | .000 | .000 | .891 | .000 |
| MET06 | .000 | .776 | .000 | .000 |
| MET05 | .000 | .733 | .000 | .000 |
| MET01 | .000 | .789 | .000 | .000 |
| MET02 | .000 | .798 | .000 | .000 |
| MET03 | .000 | .787 | .000 | .000 |
| LDS8  | .745 | .000 | .000 | .000 |
| LDS2  | .691 | .000 | .000 | .000 |
| LDS3  | .770 | .000 | .000 | .000 |
| LDS7  | .755 | .000 | .000 | .000 |
| LDS4  | .796 | .000 | .000 | .000 |
| LDS6  | .834 | .000 | .000 | .000 |
| LDS5  | .825 | .000 | .000 | .000 |

# **Standardized Indirect Effects (Group number 1 - Default model)**

|       | LDS  | MET  | JOB  | OGC  |
|-------|------|------|------|------|
| MET   | .000 | .000 | .000 | .000 |
| JOB   | .524 | .000 | .000 | .000 |
| OGC   | .600 | .454 | .000 | .000 |
| OGC7  | .394 | .480 | .467 | .000 |
| OGC6  | .449 | .547 | .533 | .000 |
| OGC2  | .495 | .603 | .587 | .000 |
| OGC3  | .492 | .599 | .583 | .000 |
| OGC4  | .493 | .601 | .585 | .000 |
| OGC1  | .495 | .604 | .588 | .000 |
| OGC5  | .496 | .604 | .588 | .000 |
| JOB3  | .399 | .486 | .000 | .000 |
| JOB1  | .422 | .514 | .000 | .000 |
| JOB2  | .429 | .523 | .000 | .000 |
| JOB4  | .467 | .569 | .000 | .000 |
| MET06 | .637 | .000 | .000 | .000 |
| MET05 | .601 | .000 | .000 | .000 |
| MET01 | .648 | .000 | .000 | .000 |
| MET02 | .655 | .000 | .000 | .000 |
| MET03 | .646 | .000 | .000 | .000 |
| LDS8  | .000 | .000 | .000 | .000 |
| LDS2  | .000 | .000 | .000 | .000 |
| LDS3  | .000 | .000 | .000 | .000 |

|      | LDS  | MET  | JOB  | OGC  |
|------|------|------|------|------|
| LDS7 | .000 | .000 | .000 | .000 |
| LDS4 | .000 | .000 | .000 | .000 |
| LDS6 | .000 | .000 | .000 | .000 |
| LDS5 | .000 | .000 | .000 | .000 |

| Parame | ter |     | Estimate | Lower | Upper | P    |
|--------|-----|-----|----------|-------|-------|------|
| MET    | <   | LDS | .821     | .721  | .895  | .001 |
| JOB    | <   | MET | .639     | .488  | .735  | .002 |
| OGC    | <   | MET | .276     | .160  | .406  | .001 |
| OGC    | <   | JOB | .711     | .583  | .820  | .003 |
| LDS5   | <   | LDS | .825     | .744  | .885  | .003 |
| LDS6   | <   | LDS | .834     | .740  | .889  | .002 |
| LDS4   | <   | LDS | .796     | .725  | .855  | .001 |
| LDS7   | <   | LDS | .755     | .669  | .828  | .002 |
| LDS3   | <   | LDS | .770     | .675  | .841  | .002 |
| LDS2   | <   | LDS | .691     | .543  | .798  | .002 |
| LDS8   | <   | LDS | .745     | .609  | .817  | .005 |
| MET03  | <   | MET | .787     | .718  | .838  | .004 |
| MET02  | <   | MET | .798     | .713  | .867  | .002 |
| MET01  | <   | MET | .789     | .707  | .848  | .003 |
| MET05  | <   | MET | .733     | .630  | .806  | .002 |
| MET06  | <   | MET | .776     | .666  | .848  | .002 |
| JOB4   | <   | JOB | .891     | .848  | .930  | .001 |
| JOB2   | <   | JOB | .818     | .736  | .873  | .003 |
| JOB1   | <   | JOB | .805     | .731  | .865  | .002 |
| JOB3   | <   | JOB | .760     | .656  | .839  | .002 |
| OGC5   | <   | OGC | .827     | .754  | .880  | .002 |
| OGC1   | <   | OGC | .826     | .758  | .876  | .002 |
| OGC4   | <   | OGC | .823     | .747  | .882  | .001 |
| OGC3   | <   | OGC | .820     | .747  | .874  | .001 |
| OGC2   | <   | OGC | .826     | .750  | .882  | .001 |
| OGC6   | <   | OGC | .749     | .584  | .852  | .004 |
| OGC7   | <   | OGC | .657     | .559  | .737  | .002 |

# **APPENDIX 7 - QUESTIONNAIRES**

# Please specify your level of agreement to a statement typically in five points:

(1) Strongly disagree; (2) Disagree; (3) Neither agree nor disagree; (4) Agree; (5) Strongly agree

1. Meeting effectiveness (Leach et al., 2009; Nixon & Littlepage, 2014; Allen et al., 2014; Nicolas et al. 2001)

When the meeting is finally over, you feel satisfied with the results.

The meeting states each problem with a clear solution.

Most of conflicts raising in the meeting are solved satisfactorily.

After the meeting, you achive your work goals.

After the meeting, you get your leader's understanding about your difficulties.

After the meeting, you receive your leader's instruction and sympathy with what you are fulfilling. The meeting provides you with an opportunity to acquire useful information.

2. **Agenda** (Nixon & Littlepage, 2014; Inglis & Weaver, 2000; Lehmann, 2013; Leach, 2014; Putnam, 2009)

Meetings start on time.

Meetings end when you expect them to end.

A written agenda is provided before the meetings.

Overall, I am satisfied with the meeting process.

The team meeting was time well spent.

A verbal agenda is provided at the meetings.

3. **Leadership** (Avolio & Bass, 2004; Men, 2014; Nixon & Littlepage, 2014, Men, 2014; Tsai, 2011) In the meeting, the leader will express the objective opinion with followers.

In the meeting, the leader will remain impartial rather than speaking out and expressing his/her views.

In the meeting, the leader will express the nonconservative opinion with followers.

In the meeting, the leader will interact with followers- social distance is low.

In the meeting, the leader will support and encourage followers to express their ideas.

In the meeting, the leader will foster group goals.

In the meeting, he leader will communicate a high degree of confidence in the followes' ability to meet expectations.

In the meeting, the leader will express high performance expectations for followers.

In the meeting, the leader provides recognition/rewards when others reach their goals.

In the meeting, the leader empowers his/her followers to make the final decision.

#### 4. Employee voice (Farndale et al., 2011; Yeh, 2014)

Leaders here at providing everyone with the chance to comment on proposed changes.

Subordinates strongly express ideas.

Leaders here at listening ideas and suggestions from subordinates.

Leaders here at responding to suggestions from employees.

#### 5. **Substantive conflict** (Guetzkow et al., 1949; Amason, 1996)

When conflicts happen in the meeting, your leader and the group search for the real causes of the problem and find out suitable solutions.

When conflicts happen in the meeting, your leader provides the accurate information and solves together with flollowers.

When conflicts happen in the meeting, your leader combines his/her opinion with the group's opinion for making the final decision.

# 6. Internal motivation (Men, 2014; Men & Jiang, 2016; Nixon & Littlepage, 2014)

Doing your job well gives you the feeling that you have accomplished something worthwhile.

The things you do on your job are important to you.

You enjoy this work very much.

You have fun doing your job.

# 7. **Perceived organizational support** (Eisenberger et al., 1986)

The organization is willing to extend itself in order to help you perform your job to the best of my ability.

Help is available from the organization when you have a problem.

The organization wishes to give you the best possible job for which you are qualified.

The organization is willing to help you when you need a special favor.

The organization would understand if you were unable to finish a task on time.

The organization really cares about my well-being.

# 8. **Instrinsic motivation** (Eisenberger et al., 1986; Gagne et al., 2010)

Doing your job well gives you the feeling that you have accomplished something worthwhile.

The things you do on your job are important to you.

You enjoy this work very much.

You have fun doing your job.

# 9. Extrinsic motivation (Eisenberger et al., 1986; Gagne et al., 2010)

If you produce a high quality of work output, you will lead to higher pay.

This job affords you a certain standard of living.

It allows you to make a lot of money.

Producing a low quality of work decreases your chances for promotion.

# 10. Job satisfaction (Alonderiene, 2016; Steel et al, 2018; Lu et at., 2016)

You feel fairly satisfied with your present job.

Most days you are enthusiastic about your work.

Each day at work seems like it will never end.

You find real enjoyment at your work.

# 11. Organizational identification (Gautam et al., 2004)

You are proud to be an employee of the organization.

You often describe yourself to others by saying 'I work for this organization' or 'I am from this organization.'

You talk up this organization to your friends as a great company to work for.

You become irritated when you hear others outside the organization criticize your organization.

You have warm feelings toward this organization as a place to work.

You would describe your organization as a large 'family' in which most members feel a sense of belonging.

You are willing to put in a great deal of effort beyond that normally expected to help this organization to be successful.

# 12. Organizational commitment (Cook & Wall, 1980; Buchanan, 1974; Mowday et al., 1978; Moon, 2000)

You have warm feelings toward this organization as a place to live and work.

You feel yourself to be part of the organization.

You like to feel you are making some effort, not just for yourself but for the organization as well.

You really feel as if this organization's problems are your problems.

You feel a sense of pride working for this organization.

In your work, you are willing to put in a great deal of effort beyond that normally expected.

The offer of a bit more money with another employer would not seriously make you think of changing your job.

THE END